Item: 4 Local Review Body: 13 December 2024. Proposed Erection of Ten Houses with Air Source Heat Pumps and Associated Infrastructure near Cairston Road, Stromness (22/382/PP). Report by Corporate Director for Strategy, Performance and Business Solutions.

1. Overview

- 1.1. Planning application 22/382/PP in respect of the proposed erection of ten houses with air source heat pumps, construction of a road and associated landscaping and infrastructure near Cairston Road, Stromness, was granted by the Appointed Officer on 28 June 2024, subject to conditions.
- 1.2. Under the Town and Country Planning (Scotland) Act 1997 and the Town and Country Planning (Schemes of Delegation and Local Review Procedure) (Scotland) Regulations 2013, where an application for planning permission for local development has been determined by the Appointed Officer in accordance with the Council's Planning Scheme of Delegation, the applicant is entitled to seek a review of that decision by the Local Review Body.
- 1.3. The applicant has submitted a Notice of Review (see Appendix 1) requesting that the decision of the Appointed Officer, referred to at paragraph 1.1 above, be reviewed, specifically Condition 7 imposed on the consent by the Appointed Officer. The applicant has indicated that they think the most appropriate way for their review to be conducted is by the assessment of the review documents only, with no further procedure.
- 1.4. A letter from the Chief Planner, Scottish Government, issued in July 2011, confirmed that a review by a Local Review Body should be conducted by means of a full consideration of the application afresh.

- 1.5. Section 21 of the Scheme of Administration states that the Local Review Body will undertake unaccompanied site inspections for all planning applications subject to a local review, prior to meeting to consider the review. The purpose of the site inspection, together with the procedure to be adopted, are set out in section 21.2 of the Scheme of Administration. The applicant and interested parties have been advised that an unaccompanied site inspection to the site at Cairston Road, Stromness, is due to be undertaken on 13 December 2024 at approximately 09:30.
- 1.6. The applicant has submitted new information as part of their Notice of Review. This is, however, considered as new information on an existing matter and, as a result, its submission to the Local Review Body is permitted. Further details are provided in section 4.1 below.
- 1.7. The review procedure is set out in section 5 below.

2. Recommendations

- 2.1. The Local Review Body is required to:
 - i. Determine whether it has sufficient information to proceed to determination of the review, and if so whether to uphold, reverse or vary the decision of the Appointed Officer.
- 2.2. Should the Local Review Body determine that the decision is reversed or varied, it is required to:
 - i. Determine the reasons, and, if applicable, the relevant matters in respect of potential conditions to be attached to the decision notice.
- 2.3. Should the Local Review Body determine that the decision is varied, it is recommended that members of the Local Review Body:
 - Delegates powers to the Corporate Director for Strategy, Performance and Business Solutions, following consultation with the Planning Advisor and the Legal Advisor, to determine the necessary conditions to attach to the Decision Notice.
- 2.4. Should the Local Review Body determine that it does not have sufficient information to proceed to determination of the review, it is required to:

- i. Determine what further information is required, which parties are to be requested to provide the information, and whether to obtain further information by one or more of the following methods:
 - By means of written submissions under the procedure set out in Regulation 15 of the Town and Country Planning (Schemes of Delegation and Local Review Procedure) (Scotland) Regulations 2013; and/or
 - By the holding of one or more hearing under the Hearing Session Rules set out in Schedule 1 of the Town and Country Planning (Schemes of Delegation and Local Review Procedure) (Scotland) Regulations 2013.

3. Planning Authority Decision

- 3.1. The Planning Handling Report, Planning Services file and the Decision Notice are attached as Appendices 2, 3 and 4 to this report.
- 3.2. On 28 June 2024, the Appointed Officer granted planning application 22/382/PP subject to conditions (see Decision Notice attached as Appendix 4). The Notice of Review relates specifically to Condition 7, attached to the approval, as noted below.
 - No development shall commence until full details of a footway across the Cairston Road frontage of the site have been submitted to and approved, in writing, by the Planning Authority. These details shall include:
 - The extent of the footway from the south corner of the site adjoining the third-party access, to the east corner of the site adjacent to Karlea, comprising the whole frontage of the application site with Cairston Road, other than the approved access.
 - Full construction details of the footway, which shall be not less than 1.8 metres wide, to a standard Roads Services footway construction.
 - Location and full construction details of pedestrian crossing points.
 - Associated street lighting, including any alterations to existing street lighting columns.
 - Any drainage included within the footway construction.
 - Construction (including replacement of the existing wall where relevant) of a dry stone wall along the length of the back edge of the footway.

Thereafter, the development shall be completed wholly in accordance with approved details prior to first occupation of any house, unless otherwise approved, in writing, under the provisions of condition 06. Reason: In the interest of road safety, and as the development of an allocated housing site within the settlement boundary.

4. Local Review Procedure

- 4.1. The applicant's Notice of Review contains a new footpath layout detailed as "Plan C" on page 8 of Appendix 1. "Plan C" could not have been before the Appointed Officer when they made their determination on 28 June 2024, as it was provided to the planning service on 24 July 2024. This is considered new information on an existing matter and, as a result, its submission as part of the Notice of Review is permitted.
- 4.2. In response to a Notice of Review, "interested parties" are permitted to make a representation to the Local Review Body. "Interested parties" include any party who has made, and not withdrawn, a representation in connection with the application. A representation was received from Development Management and is attached as Appendix 5.
- 4.3. In instances where a representation is received from an "interested party", the applicant is afforded the opportunity to make comments on any representation received. No further comments from the applicant and/or agent were received.
- 4.4. The Local Review Body may uphold, reverse or vary the decision of the Appointed Officer.
- 4.5. All conditions should be in accordance with Planning Circular 4/1998 regarding the use of conditions in planning permissions. As a matter of policy, all conditions should only be imposed when they are:
 - Necessary.
 - Relevant to planning.
 - Relevant to the development to be permitted.
 - Enforceable.
 - Precise.
 - Reasonable in all other respects.
- 4.6. Paragraph 85 of Planning Circular 4/1998 indicates that, in exceptional circumstances, conditions may be imposed to restrict further development which would normally be permitted by the provisions of the Town and Country Planning (General Permitted Development) (Scotland) Order or the Town and Country Planning (Use Classes) (Scotland) Order 1997.

- 4.7. If the decision is varied, it is proposed that powers are delegated to the Corporate Director for Strategy, Performance and Business Solutions, following consultation with the Planning Advisor and the Legal Advisor, to determine the necessary conditions.
- 4.8. If the Local Review Body decides that further procedure is required, it may decide to hold a pre-examination meeting to consider what procedures to follow in the review, or to obtain further information by one or more of the following methods:
 - By means of written submissions under the procedure set out in Regulation 15 of the Town and Country Planning (Schemes of Delegation and Local Review Procedure) (Scotland) Regulations 2013; and/or.
 - By the holding of one or more hearing under the Hearing Session Rules set out in Schedule 1 of the Town and Country Planning (Schemes of Delegation and Local Review Procedure) (Scotland) Regulations 2013.

5. Relevant Planning Policy and Guidance

- 5.1. Section 25 of the Town and Country Planning (Scotland) Act 1997 as amended states, "Where, in making any determination under the Planning Acts, regard is to be had to the development plan, the determination is, unless material considerations indicate otherwise ... to be made in accordance with that plan..."
- 5.2. The full text of the Orkney Local Development Plan 2017 (OLDP 2017) and other supplementary planning advice and guidance can be read on the Council website here. Although the Orkney Local Development Plan is "out-of-date" and has been since April 2022, it is still a significant material consideration when considering planning applications. The primacy of the plan should be maintained until a new plan is adopted. However, the weight to be attached to the Plan will be diminished where policies within the plan are subsequently superseded.
- 5.3. National Planning Framework 4 was approved by Parliament on 11 January 2023 and formally adopted by Scottish Ministers on 13 February 2023. The statutory development plan for Orkney consists of the National Planning Framework and the Orkney Local Development Plan 2017 and its supplementary guidance. In the event of any incompatibility between a provision of National Planning Framework 4 and a provision of the Orkney Local Development Plan 2017, National Planning Framework 4 is to prevail as it was adopted later. It is important to note that National Planning Framework 4 must be read and applied as a whole, and that the intent of each of the 33 policies is set out in National Planning Framework 4 and can be used to guide decision-making.

- 5.4. It is for the Local Review Body to determine which policies are relevant to this application; however the policies listed below were referred to by the Appointed Officer in the Planning Handling Report:
 - Orkney Local Development Plan 2017:
 - Policy 1 Criteria for All Development.
 - Policy 2 Design.
 - Policy 5A Housing.
 - Policy 9G Natural Heritage and Landscape.
 - Policy 14C Transport, Travel and Road Network Infrastructure.
- 5.5. With regard to National Planning Framework 4 (NPF4), no specific policies were referred to by the Appointed Officer, but they noted that the development complies with relevant policy provisions of NPF4.

For Further Information please contact:

Susan Shearer, Planning Advisor to the Local Review Body, extension 2433, Email: <u>susan.shearer@orkney.gov.uk</u>.

Implications of Report

- **1. Financial:** All resources associated with supporting the review procedure, mainly in the form of staff time, are contained within existing revenue budgets.
- 2. Legal: The legal implications are set out in the body of the report.
- 3. **Corporate Governance:** In accordance with the Scheme of Administration, determination of Notices of Review is delegated to the Local Review Body.
- 4. Human Resources: None.
- 5. Equalities: None.
- 6. Island Communities Impact: None.
- 7. **Links to Council Plan:** The proposals in this report support and contribute to improved outcomes for communities as outlined in the following Council Plan strategic priorities:
 - □Growing our economy.
 - □ Strengthening our Communities.
 - □ Developing our Infrastructure.

□ Transforming our Council.

8. **Links to Local Outcomes Improvement Plan:** The proposals in this report support and contribute to improved outcomes for communities as outlined in the following Local Outcomes Improvement Plan priorities:

 \Box Cost of Living.

□Sustainable Development.

□Local Equality.

9. Environmental and Climate Risk: None.

- 10. Risk: None.
- 11. Procurement: None.
- 12. Health and Safety: None.
- 13. Property and Assets: None.
- 14. Information Technology: None.
- 15. Cost of Living: None.

List of Background Papers

Orkney Local Development Plan 2017, available <u>here</u>. National Planning Framework 4, available <u>here</u>. Planning Circular 4/1988, available <u>here</u>.

Appendices

- Appendix 1 Notice of Review (pages 1 26).
- Appendix 2 Planning Handling Report (pages 27 32).
- Appendix 3 Planning Services File (pages 33 359).
- Appendix 4 Decision Notice (pages 360 371).
- Appendix 5 Representation from Development Management (page 372).

Pages 1 to 371 can be viewed <u>here</u>, clicking on "Accept and Search" and inserting the planning reference"24/028/PP.".

NOTICE OF REVIEW

Under Section 43A(8) Of the Town and County Planning (SCOTLAND) ACT 1997 (As amended) In Respect of Decisions on Local Developments The Town and Country Planning (Schemes of Delegation and Local Review Procedure) (SCOTLAND)

Regulations 2013 The Town and Country Planning (Appeals) (SCOTLAND) Regulations 2013

IMPORTANT: Please read and follow the guidance notes provided when completing this form. Failure to supply all the relevant information could invalidate your notice of review.

PLEASE NOTE IT IS FASTER AND SIMPLER TO SUBMIT PLANNING APPLICATIONS ELECTRONICALLY VIA <u>https://www.eplanning.scot</u>

1. Applicant's Details			nt's Details	(if any)
Title Forename Surname		Ref No Forena Surnar	me ne	
Company Name Building No./Name Address Line 1 Address Line 2 Town/City	ORKNEY BUILDERS LTD C/O NESS PLANNING	Compa Buildin Addres Addres Town/0	ny Name g No./Name s Line 1 s Line 2 City	NESS PLANNING WESTFIELD BRAE OF CANTRAY CROY
Postcode Telephone Mobile Fax Email info@nessp	lanning.co.uk	Postco Teleph Mobile Fax Email	de one info@nessp	IV2 5PW 07827716786 lanning.co.uk
3. Application De	tails			
Planning authority Planning authority's application reference number		ORKNE	Y ISLAND CO	DUNCIL
Site address				
LAND AT CAIRSTON ROAD, STROMNESS, KW16 3JS				
Description of proposed development				
ERECTION OF 10 HOUSES WITH AIR SOURCE HEAT PUMPS AND ASSOCIATED INFRASTRUCTURE				

1

Date of application 19/10/22 Date of decision (if any) 28/06/24	
Note. This notice must be served on the planning authority within three months of the date of decision notice or from the date of expiry of the period allowed for determining the application.	
4. Nature of Application	
Application for planning permission (including householder application) X	
Application for planning permission in principle	
Further application (including development that has not yet commenced and where a time limit has been imposed; renewal of planning permission and/or modification, variation or removal of a planning condition)	
Application for approval of matters specified in conditions	
5. Reasons for seeking review	
Refusal of application by appointed officer	
Failure by appointed officer to determine the application within the period allowed for determination of the application	
Conditions imposed on consent by appointed officer X	
6. Review procedure	
The Local Review Body will decide on the procedure to be used to determine your review and may at any time during the review process require that further information or representations be made to enable them to determine the review. Further information may be required by one or a combination of procedures, such as: written submissions; the holding of one or more hearing sessions and/or inspecting the land which is the subject of the review case.	ine
Please indicate what procedure (or combination of procedures) you think is most appropriate for the handling of your review. You may tick more than one box if you wish the review to be conducted by a combination of procedures.	Ē
Further written submissions Image: Constraint of the submission of the sub	
If you have marked either of the first 2 options, please explain here which of the matters (as set out in your statement below) you believe ought to be subject of that procedure, and why you consider further submissions of hearing necessary.	or a
7. Site inspection	
In the event that the Local Review Body decides to inspect the review site, in your opinion:	
Can the site be viewed entirely from public land? YES YES YES	

If there are reasons why you think the Local Review Body would be unable to undertake an unaccompanied site inspection, please explain here:

8. Statement

You must state, in full, why you are seeking a review on your application. Your statement must set out all matters you consider require to be taken into account in determining your review. <u>Note</u>: you may not have a further opportunity to add to your statement of review at a later date. It is therefore essential that you submit with your notice of review, all necessary information and evidence that you rely on and wish the Local Review Body to consider as part of your review.

If the Local Review Body issues a notice requesting further information from any other person or body, you will have a period of 14 days in which to comment on any additional matter which has been raised by that person or body.

State here the reasons for your notice of review and all matters you wish to raise. If necessary, this can be continued or provided in full in a separate document. You may also submit additional documentation with this form.

PLEASE SEE THE ATTACHED STATEMENT AND PRODUCTIONS

]
Ha yo	ave you raised any matters which were not before the appointed officer at the time our application was determined? Yes NO	
lf b€	yes, please explain below a) why your are raising new material b) why it was not raised with the appointed fore your application was determined and c) why you believe it should now be considered with your revie	l officer w.
		1

9. List of Documents and Evidence

Please provide a list of all supporting documents, materials and evidence which you wish to submit with your notice of review

AS SET OUT IN THE REVIEW STATEMENT

<u>Note.</u> The planning authority will make a copy of the notice of review, the review documents and any notice of the procedure of the review available for inspection at an office of the planning authority until such time as the review is determined. It may also be available on the planning authority website.

1	0.	CI	ne	ck	list	l

Please mark the appropriate boxes to confirm that you have provided all supporting documents and evidence relevant to your review:

Full completion of all parts of this form

Statement of your reasons for requesting a review

All documents, materials and evidence which you intend to rely on (e.g. plans and drawings or other documents) which are now the subject of this review.

<u>Note</u>. Where the review relates to a further application e.g. renewal of planning permission or modification, variation or removal of a planning condition or where it relates to an application for approval of matters specified in conditions, it is advisable to provide the application reference number, approved plans and decision notice from that earlier consent.

DECLARATION

I, the applicant/agent hereby serve notice on the planning authority to review the application as set out on this form and in the supporting documents. I hereby confirm that the information given in this form is true and accurate to the best of my knowledge.

Signature:	Nicola Drummond	Name:	Ness Planning	Date:	26 September 2024
Any personal data that you have been asked to provide on this from will be held and processed in accordance with Data Protection Legislation.					

YES

YES 🔲

REQUEST FOR PLANNING REVIEW AGAINST THE TERMS OF CONDITION 7 PLANNING PERMISSION 22/382/PP

ERECT 10 HOUSES WITH AIR SOURCE HEAT PUMPS, CONSTRUCT A ROAD AND ASSOCIATED LANDSCAPING AND INFRASTRUCTURE

CAIRSTON ROAD, STROMNESS, ORKNEY, KW16 3JS

BACKGROUND

This report sets out the grounds of appeal against the terms of Condition 7 of planning permission 22/382/PP which involves the erection of 10 affordable homes on land at Cairston Road, Stromness. The Review Statement sets out the background to the development proposal and confirms there are no outstanding technical or infrastructure matters which would preclude the grant of planning permission.

The planning application was submitted on 19 October 2022 and the planning permission issued on 28 June 2024.

This Review is submitted within the three month deadline as specified by the relevant Regulations.

PURPOSE OF REVIEW REQUEST

Planning permission was issued following detailed assessment and amended layout details to accord with the statutory consultee requirements, most particularly drainage matters and road layout details.

The permission was issued subject to a number of conditions. This Review seeks the deletion of Condition 7 on the grounds that it is not necessary, relevant or justified. It fails to meet the Scottish Government advice on the Use of Conditions (Circular4/1998). It results in an unduly onerous requirement on the developer, involves land outwith the redline application site boundary and will significantly increase the site development costs and potentially render part of the approved site layout incapable of development.

CONDITION 7

Condition 7 states:

07. No development shall commence until full details of a footway across the Cairston Road frontage of the site have been submitted to and approved, in writing, by the Planning Authority. These details shall include:

• The extent of the footway from the south corner of the site adjoining the third party access, to the east corner of the site adjacent to Karlea, comprising the whole frontage of the application site with Cairston Road, other than the approved access.

• Full construction details of the footway, which shall be not less than 1.8 metres wide, to a standard Roads Services footway construction.

• Location and full construction details of pedestrian crossing points.

- Associated street lighting, including any alterations to existing street lighting columns.
- Any drainage included within the footway construction.

• Construction (including replacement of the existing wall where relevant) of a dry stone wall along the length of the back edge of the footway.

Thereafter, the development shall be completed wholly in accordance with approved details prior to first occupation of any house, unless otherwise approved, in writing, under the provisions of condition 06.

Reason: In the interests of road safety, and as the development of an allocated housing site within the settlement boundary.

REVIEW OF THE TERMS OF CONDITION 7

First and foremost, the terms of the condition exceed that of the requirements specified by the Roads Service. In their consultation memo dated 6 November 2023 (their final comment) they stated that they had no objections and supported the proposed layout including the access arrangements. The response did include a reference to the provision of a footpath and stated:

However, it is noted that there has been no amendment made to the footpath from the development at its junction with Cairston Road, where it was previously requested that the sections of footway should be extended to provide pedestrian crossing points. However, this is something that could be achieved by an appropriate planning condition.

For the avoidance of any doubt, what the Roads Service are seeking is

- i) Extend the footpath from the new access junction serving the new development to provide pedestrian crossing points.
- ii) This can be secured by planning condition.

To be clear, the proposed site layout indicated a footway that extended the length of the new access through the development site but had not extended the footway east to a point where safe pedestrian crossing points could be formed. The crossing point would provide safe access to the existing footway which extends both east up the hill and west to the town centre.

The following plans explain the situation and the applicant's willingness to accord with the Roads Service request and provide an extended footway and appropriate crossing points (Plan C below.

Plan A – plan as approved with footway that extends to either side of the bellmouth of the new access.

Plan B – APPROVED SITE LAYOUT PLAN with footpath crossing identified on the new access road (Red arrow)

Plan C – details to address the terms of the Condition and comply with the Roads Service requirements and was submitted to the planning service on 24 July 2024 but has not been responded to. It provides an extended footway and pedestrian crossing to secure access to the existing footway on Cairston Road. Just as required by the Roads Service.

These drawings demonstrate two fundamental points.

Firstly Plans A and B above are stamped as the approved plans pertaining to the planning permission. The condition contradicts the details of the approved plans.

Secondly, Plan C was submitted to demonstrate that the terms of the Condition can be achieved but in line with the requirements of the Roads Service – that is, extend the pavement to a safe (new) crossing point which in turn provides safe access to the existing footway on the opposite side of Cairston Road.

View of the development site and existing footway on the south side of Cairston Road.

Approximate location of crossing point marked

Application site marked by red arrow

REPORT OF HANDLING

The Officer advises at the paragraph described as Access and Parking that a public footway is to be constructed along the roadside boundary of the application site. The justification for this is based on Policy 14C of the adopted Local Development Plan 2017.

However Policy 14C does not specify nor require a new footpath adjacent to a new site as mandatory, or indeed at all. The proposal as submitted and as set out on Plan C above entirely accords with the requirements of the Roads Service and meets the objectives of Policy 14C which states: (comments added in blue text to demonstrate compliance). **Policy 14C**.

Road Network Infrastructure Development will only be permitted where due regard has been paid to Designing Streets and the proposal demonstrates that:

i. It is well connected to the existing network of roads, paths and cycleways and will not create a barrier to future development; it is well connected and provides a new and dedicated crossing. There are no footpaths adjoining the application site to the west or east of the site on the application side of the road to connect into. The complete footpath is on the opposite side of the road. This proposal will connect to that.

ii. It can be safely and conveniently accessed by service, delivery and other goods vehicles, as appropriate to the development; it can, the new access accords with the Roads Service design guidance and provides a full footway throughout the site

iii. Any new access, or upgrades to an existing access, linking to the adopted road network has been designed to an adoptable standard as defined by the National Roads Development Guide (new accesses should be resource-efficient, safe for all road users, and convenient for sustainable travel modes); the new road and access is designed to adoptable standards

iv. It is designed to cause minimal impact on the character of the site and the surrounding area; and the Roads Service has no issue with the design, layout or location of the proposed new access arrangements and new road within the site boundary

v. There are satisfactory arrangements to ensure that there is provision for the long-term maintenance. The road will be adopted and constructed in accordance with Council requirements

Policy 14C does not require a footpath adjacent to a development site. The Roads Service do not require a footpath along the length of the application site boundary. It will serve no useful purpose, does not link into an existing footpath and creates a section of path that will be isolated and lead to indiscriminate crossing of Cairnsay Road.

The pedestrian-safe option is as shown on Plan C above: an extended footway that provides a pedestrian-safe crossing to the existing footway on the opposite side of the road.

There is therefore no specific requirement for the footpath as specified in Condition 7. The new road layout and safe pedestrian crossings which provide safe access to the footpath network is more than adequate to serve the new development and accords with Road Service requirements.

The narrow width of the existing verge means that the provision of a 1.8metre wide path will involve encroachment into the application site, demolition and reconstruction of the wall and resiting of the existing lighting column. The additional cost of this for an affordable housing development is self evident.

Site area – note narrow width of the verge, well below 1.8m wide and note safe and well maintained footpath opposite to which the site can connect

Note narrow verge and the existing wall to be demolished and reconstructed within the application site

Put simply, Condition 7 exceeds what is necessary and was not a requirement of the Roads Service. Instead it is an onerous requirement that cannot be delivered without significant financial outlay for the applicant and cannot be situated on the existing narrow verge, forcing demolition and reconstruction of the stone wall and potential adjustment of the position of the house that is proposed immediately to the rear of the boundary. All of this is also outwith the red line application site boundary.

This means that in addition to using land outside the application site boundary, the terms of Condition 7 will likely require a change in the position of the 3 bedroom bungalow. The cost of replacing the stone wall and relocation of the existing lighting column will amount to some £65,000.

Changes to the house layout will be considered material and likely require a new application. The condition effectively renders the permission incapable of implementation without a material change.

All it achieves is a path that leads from the site, runs adjacent to the site boundary and terminates some way to the east, leading nowhere and taking pedestrians further away from the town and services. It meets no identified need and is unnecessary.

PLANNING POLICY AND USE OF CONDITIONS

NPF4 Policy 18 makes clear that planning conditions should only be imposed where they meet all of the tests, reinforcing the terms of the Circular.

Circular 4/1998 advises that planning conditions imposed on the grant of planning permission can enable development proposals to proceed. The power to impose conditions needs to be exercised in a manner that is <u>'fair, reasonable and practicable'</u>. Conditions should not be imposed unless they are both necessary and effective and do not place unjustifiable burdens on applicants.

The Circular further advises that planning conditions should only be imposed where they meet <u>all</u> the following tests:

- Necessary
- Relevant to planning
- Relevant to the development to be permitted
- Enforceable
- Precise
- Reasonable in all other respects

Condition 7 does place an unjustifiable burden on the applicant. It is not necessary and it is not effective.

It fails the Six Tests for Conditions set out in the Circular. The construction and replacement of the stone wall is a considerable financial burden on the applicant, disproportionate to the scale of development and is not necessary. Because, as Drawing SK009 clearly demonstrates (and the photographs), the existing verge is at no point 1.8m wide, either the existing wall must be removed and relocated further into the site or the road must be correspondingly narrowed.

It is considered unlikely the Roads Service will agree to that. The cost of a replacement stone wall, including sourcing the raw material from a quarry, is in the region of £65,000. It must not be overlooked that the development provides a total of 10 much-needed affordable homes that will be delivered in partnership with Scottish Government funding and provide much-needed homes for local people.

In addition, there will be a cost of relocating the streetlights, the actual construction of the footpath and drainage. In addition, the land adjacent to the nearest plot will require considerable earth modelling resulting in a steep and unusable area of garden ground.

The Chief Planner, in his letter dated 28 June 2024 noted that Scotland has declared a national housing emergency and reinforces the Intent of NPF4 which, under Policy 16, seeks to

"to encourage, promote and facilitate the delivery of more high quality, affordable and sustainable homes, in the right locations, providing choice across tenures that meet the diverse housing needs of people and communities across Scotland."

The onerous implications of meeting the terms of the condition does not meet this Intent.

The Circular advises on each of the six tests.

Necessary

Conditions should be used to address a particular issue not impose unjustifiable controls. The Roads Service has not requested the footpath, only that suitable pedestrian crossings are incorporated into an extended area of footpath. We have submitted a drawing showing two pedestrian crossings, providing safe crossings for users across both the access and Cairston Road., in a location that ensures pedestrian safety and relates directly to the development proposal. The condition is not necessary as worded: it is not required by any general policy, was not required by the Roads Service and serves no purpose directly associated with the scope of development.

The condition fails the test of need.

Relevance to the development to be permitted

The terms of the condition do not fairly and reasonably relate to the development to be permitted. It is not justified by the nature of the development permitted. It requires works on land outwith the control of the applicant, for which additional consents will be required as it directly affects the adopted road. The footpath has not been identified as necessary in terms of the scope of development.

It is in conflict with the approved Road Layout Plan and site layout. The effect of the development is not such that it requires a full width footway which terminates at the boundary of the site. It serves no road safety purpose. Where it terminates at the east of the site boundary will force pedestrians to cross the road to join the existing footway on the south side. What possible purpose does it achieve. The proposed path will be heading away from the town centre and main services. It does not connect to any existing path either to the east or west and is completely superfluous.

The Cameron and Ross drawings (Plan C), demonstrate that a pedestrian crossing close to the site access will serve a direct purpose enabling pedestrians, pupils etc to cross the road close to the site entrance all as required by the Roads Service and set out in their consultation response.

The condition fails the test of relevance to the development permitted.

Enforceable

The Condition may be enforceable because it is suspensive to development commencing on site but that does not render it appropriate. However, for the planning authority to initiate enforcement action as a Breach of Condition Notice for example, would be to enforce against the Council as it is the Council who own the verge and existing road. Moreover, should the applicant submit details but fail to implement the works identified as stipulated, the breach of condition would relate to the occupants of each of the houses. This is not an appropriate use of a condition that places unnecessary and unwelcome burdens on the Council as landowner.

Reasonableness

The condition fails this test because it is unduly restrictive and unduly onerous. Firstly this is not what the Roads Service has requested, it has never formed part of any discussion during the processing of the application and is not justified by the Reason stated in the condition.

LDP Policy 14C does not require footways adjacent to boundaries of new developments. The applicant does not have control over all the land, the verge is insufficient to enable a 1.8m wide footway and will require to either extend into the existing road or involve the reconstruction of a stone wall for its entire length and create an unreasonable and unnecessary requirement of a condition that at no time during the application process was raised as an issue or requirement of the grant of planning permission.

The condition fails the test of reasonableness.

Summary

In summary, the condition requires works that are unduly onerous, unnecessary and unreasonable. The Roads Service consultation response seeks only that the footpath adjacent to the access site is extended to enable safe pedestrian crossing points. The drawing by Cameron & Ross, Ref: 210321-000-CAM-DR-C-200 Rev.F, submitted in July to satisfy the terms of the condition, demonstrates this amended layout. This layout is reasonable in the context of the planning permission. It provides safe

pedestrian access to and from the site and connects to an existing footpath. There is no footway on the north side of Cairston Road as it heads east toward Howe Road but a full length footpath does extend along the southside of Cairston Road. It is a connection to this existing footpath that will serve a purpose rather than creating an isolated section of footway that does not connect to any existing footway and will result in pedestrians taking risks to cross a busy road in order to obtain the existing footpath.

The Review is lodged because not only does the condition fail to meet all of the 6 tests as required by the Circular but it was also not required by the Roads Service in their assessment of the application nor is it required by the terms of Policy 14C as suggested in the officer report.

Circular 4/1998 makes clear that a condition can only be considered competent if it meets ALL of the tests. This condition fails the test of reasonableness, necessity and relevance.

For all these reasons, the condition should be deleted. For the avoidance of doubt the applicant has no difficulty in complying with the Roads Services requirement to provide an extended section of footpath and safe pedestrian crossing points to gain access to the existing footway. A condition to that effect would be acceptable to the applicant.

LIST OF PRODUCTIONS

- 1 APPLICATION FORM *
- 2 APPLICATION DRAWINGS *
 - i) SITE LAYOUT (APPROVED)*
 - ii) ROAD LAYOUT (APPROVED)*
- 3 ROADS SERVICE CONSULTEE RESPONSE DATED 6 NOVEMBER *
- 4 DECISION NOTICE*
- 5 CHIEF PLANNER LETTER DATED 28 JULY 2024
- 6 POLICY 14C EXTRACT FROM THE ORKNEY LOCAL DEVELOPMENT PLAN 2017
- 7 NPF4 POLICY 18 EXTRACT
- 8 PHOTOGRAPHS
 - I) Existing verge
 - II) Existing footpath on Cairson Road and extending west to the town centre
 - III) Lack of existing footways on north side of Cairston Road
 - IV) Location of the proposed termination of the proposed footway
- 9 REVIEW STATEMENT
- 10 REVIEW APPLICATION FORM
- Denotes documents held on the planning case file and not provided

Cairston Road and existing footway running along the south side of the road

Existing footway running on the south side of Cairston Road to which the new development would gain access as set out in Plan C. Development site is on the left of the photograph

Existing footpath on the south side of Cairston Road. Note narrow width of the verge and stone wall. This would require to be removed and the road narrowed or site layout altered to accommodate the 1.8m wide path required

Existing footway which extends the full length of Cairston Road with no available footpath on the north side. The proposed path would not connect to any existing path

Location of the end point of the required footpath, which will terminate abruptly and force pedestrians to cross the road on a bend and close to the brow of a hill

Application site (blue arrow) looking west with narrow existing verge that will involve detailed engineering works to create a 1.8 m wide new footway and the clearly evident existing footway on the opposite side of the road.

Data of Consultation	22nd August 2023		
Response required by	12th September 2023		
Planning Authority Reference	22/382/PP		
Nature of Proposal	Erect 10 houses with air source heat pumps, construct		
(Description)	a road and associated landscaping and infrastructure		
Site	Cairston Road (Land Near),		
	Stromness,		
	Orkney,		
	KW16 3JS		
Proposal Location Easting	326018		
Proposal Location Northing	1010016		
Area of application site	4962		
(Metres)			
Supporting Documentation	http://planningandwarrant.orkney.gov.uk/online-applica		
URL	tions/		
	Please enter - 22/382/PP		
PA Office	Development Management		
Case Officer	Mr Jamie Macvie		
Case Officer Phone number	01856 873535 EXT 2529		
Case Officer email address	jamie.macvie@orkney.gov.uk		
PA Response To	planningconsultation@orkney.gov.uk		

INTERNAL MEMORANDUM TO: Roads Services

Comments:

As previously advised while the formation of crossroads should generally be avoided, however in this instance to ensure adequate visibility from the access to the development site there is little option other than to create a crossroads style of junction, therefore in this instance it would be acceptable.

However, it is noted that there has been no amendment made to the footpath from the development at its junction with Cairston Road, where it was previously requested that the sections of footway should be extended to provide pedestrian crossing points. However, this is something that could be achieved by an appropriate planning condition.

D.W.

E: chief.planner@gov.scot

26 June 2024

Dear Colleagues

Planning for Housing

Scotland has declared a national housing emergency. In setting out the Scottish Government's key priorities, the First Minister confirmed his intention to engage constructively to expand housing supply to meet the needs of the population and tackle homelessness. An all-tenure approach to the provision of new homes, which diversifies supply and provides a mix of tenures, will help to achieve these priorities.

Planning is just one of many factors that impact on the delivery of housing, but it must play its part. Delivery of homes depends on building the confidence of investors – and planning plays a crucial role in this.

Following the <u>Miller Homes vs. Scottish Ministers, XA41/23</u> court judgement and the more recent declaration of the housing emergency, this letter looks to provide further clarification on application of National Planning Framework 4 (NPF), including Policy 16 'Quality Homes'.

Implementation of NPF Policy

The Scottish Ministers have continued to reinforce that policies in NPF4 should be **read and applied as a whole** and that conflicts between policies are normal and to be expected. The planning system requires decision makers to weigh up all relevant policies, for example, quality homes, brownfield development and town centre living, as well as relevant material considerations in applying balanced planning judgement (section 25 of the Town and Country Planning (Scotland) Act, 1997, as amended). The introduction of NPF4 has not changed this.

The approach to planning for housing in NPF4 is different to that in previous, now superseded, Scottish Planning Policy (SPP). The SPP concepts including an effective five-year housing land supply, shortfalls in supply and the tilted balance, no longer apply. The above court judgement confirmed 'the changes to the development plan move housing policy away from disputes over numbers to an approach which seeks to provide homes in suitable locations' and that 'looking at the policies as a whole there is an emphasis on quality, diversity and sustainability'.

The sections on 'policy intent' within NPF4 are provided to help decision makers deliver on policy aspirations. The **intent** of Policy 16 is:

"to encourage, promote and facilitate the delivery of more high quality, affordable and sustainable homes, in the right locations, providing choice across tenures that meet the diverse housing needs of people and communities across Scotland."

NPF4 expects local development plans to take an **ambitious** approach, with Local Housing Land Requirements that exceed the MATHLR (Minimum All-Tenure Housing Land Requirement). This expectation is reinforced in published guidance supporting preparation of local development plans. The guidance indicates that the same evidence can be used to inform the MATHLR but that where more recent information is available it should be used. It is expected all information used to inform plan preparation is robust.

An ambitious approach, providing land to accommodate a wide choice of homes across a range of scales of sites and locations, will support the above policy intent. It is vitally important that local development plans are brought forward timeously. On land allocated for housing in local development plans, there is support for development in principle from policy **16 part a).**

NPF4 provides at policy **16 part b)** for proposals to explain how they will contribute positively to meeting local housing requirements, to local infrastructure services and facilities, and to residential amenity, using new Statements of Community Benefit.

Policy **16 part c)** supports proposals that improve affordability and choice, and address identified gaps in provision. A list of examples of the types of proposals this policy could support is provided. In relation to 'identified gaps in provision', decision makers may wish to consider the extent to which a proposed development of new homes will contribute to addressing recognised priorities of an area. This can be evidenced by a range of information available on local housing matters, such as Local Housing Strategies, local authority housing emergency action plans or planned actions to support emerging economic opportunities.

Policy **16 part e)** supports proposals for new homes where they make provision for affordable homes to meet an identified need and it strengthened contributions to affordable housing from market sites to 'at least 25%, with flexibility to local circumstances. Policy **16 part f)** includes a limited exception that can allow proposals of less than 50 affordable homes on unallocated sites, where they accord with criteria relating to build-out and the plan's spatial strategy and other relevant policies.

A significant element of the previously mentioned legal case related to policy **16 part f)** and a deliverable housing land pipeline. At the same time as publishing this letter, Scottish Ministers have also written to planning authorities to require that action programmes associated with local development plans be reviewed, up-dated and re-published as delivery programmes, and for this to be done by 31 March 2025. Under transitional arrangements, this will ensure they include the sequencing of, and timescale for, the delivery of housing sites allocated in local development plans.

As outlined above, policy 16 contains different parts with some aspects relating to location and others to types of homes. They should be weighed up as relevant to the proposal: there is no hierarchy and no one part of policy should always outweigh others. A balanced planning judgement should be reached in each case.

INVESTORS IN PEOPLE We invest in people Silver

Positive and Constructive Collaboration

We are seeking to develop a more positive dialogue on planning for housing, recognising the benefits quality homes and places can bring. We need to find constructive solutions to challenges, and to work collectively on the issues with strong commitment and buy-in across sectors.

The Scottish Government remains committed to working collaboratively with all those with an interest in planning and housing. We are currently giving careful consideration to the Competition and Markets Authority report on the housebuilding sector, and in particular the options put forward on planning.

Late last year, the Planning and Housing Ministers jointly convened a roundtable to consider the issues affecting new homes and possible actions to address them. This group will be reconvened after the Parliamentary summer recess, and in the meantime we are progressing some initial actions. These include:

- Convening a discussion on research produced on behalf of Homes for Scotland on housing need;
- Discussing with SME housebuilders how their experiences of the planning system can be better supported;
- Working across sectors on the implementation of Statements of Community Benefit for housing proposals;
- Finalising guidance on Housing Land Audits and seeking to secure support from across sectors to enable their roll out; and
- Promoting place and delivery focused Masterplan Consent Areas in areas seeking to be early adopters of this new tool.

The housing emergency is a challenge that must be tackled on many fronts. We intend to work positively and constructively to ensure the planning system contributes all it can to support delivery of the quality homes Scotland needs, where and when they are needed.

We trust the above advice supports this.

Yours faithfully

Dr Fiona Simpson Chief Planner

Ivan McKee MSP Minister for Public Finance

EXTRACT OIC LOCAL DEVELOPMENT PLAN

POLICY 14C

C. Road Network Infrastructure

Development will only be permitted where due regard has been paid to Designing Streets and the proposal demonstrates that:

- i. It is well connected to the existing network of roads, paths and cycleways and will not create a barrier to future development;
- It can be safely and conveniently accessed by service, delivery and other goods vehicles, as appropriate to the development;
- iii. Any new access, or upgrades to an existing access, linking to the adopted road network has been designed to an adoptable standard as defined by the National Roads Development Guide (new accesses should be resource efficient, safe for all road users, and convenient for sustainable travel modes);
- It is designed to cause minimal impact on the character of the site and the surrounding area; and
- v. There are satisfactory arrangements to ensure that there is provision for the long term maintenance.

Infrastructure first

Policy Principles

Policy Intent:

To encourage, promote and facilitate an infrastructure first approach to land use planning, which puts infrastructure considerations at the heart of placemaking.

Policy Outcomes:

- Infrastructure considerations are integral to development planning and decision making and potential impacts on infrastructure and infrastructure needs are understood early in the development planning process as part of an evidenced based approach.
- Existing infrastructure assets are used sustainably, prioritising low-carbon solutions.
- Infrastructure requirements, and their planned delivery to meet the needs of communities, are clear.

Local Development Plans:

LDPs and delivery programmes should be based on an integrated infrastructure first approach. Plans should:

- be informed by evidence on infrastructure capacity, condition, needs and deliverability within the plan area, including cross boundary infrastructure;
- set out the infrastructure requirements to deliver the spatial strategy, informed by the evidence base, identifying the infrastructure priorities, and where, how, when and by whom they will be delivered; and
- indicate the type, level (or method of calculation) and location of the financial or in-kind contributions, and the types of development from which they will be required.

Plans should align with relevant national, regional and local infrastructure plans and policies and take account of the Scottish Government infrastructure investment hierarchy and sustainable travel and investment hierarchies in developing the spatial strategy. Consistent early engagement and collaboration between relevant stakeholders will better inform decisions on land use and investment.

Policy 18

- a) Development proposals which provide (or contribute to) infrastructure in line with that identified as necessary in LDPs and their delivery programmes will be supported.
- b) The impacts of development proposals on infrastructure should be mitigated. Development proposals will only be supported where it can be demonstrated that provision is made to address the impacts on infrastructure. Where planning conditions, planning obligations, or other legal agreements are to be used, the relevant tests will apply.

Where planning obligations are entered into, they should meet the following tests:

- be necessary to make the proposed development acceptable in planning terms
- serve a planning purpose
- relate to the impacts of the proposed development
- fairly and reasonably relate in scale and kind to the proposed development
- be reasonable in all other respects

Planning conditions should only be imposed where they meet all of the following tests. They should be:

- necessary
- relevant to planning
- relevant to the development to be permitted
- enforceable
- precise
- reasonable in all other respects

Policy impact:

- Just Transition
- Conserving and recycling assets
- 📀 Local living
- Compact urban growth
- Rebalanced development

Key policy connections:

Tackling the climate and nature crises Climate mitigation and adaptation Biodiversity Brownfield, vacant and derelict land and empty buildings Energy Zero waste Sustainable transport Design, quality and place Local Living and 20 minute neighbourhoods Heat and cooling Quality homes Rural homes Blue and green infrastructure Play, recreation and sport Flood risk and water management Health and safety Digital infrastructure Business and industry City, town, local and commercial centres Rural development

210321 - Housing Development, Cairston Road, North, Stromness. SK009 - Dimensions from Road Channel to Existing Wall. (1:200 @ A2) By JMA - 10/07/24

Planning Handling Report

Determination under delegated powers

Planning Application No.:	22/382/PP
Application address:	Cairston Road (Land Near), Stromness, Orkney, KW16 3JS
Proposal:	Erect 10 houses with air source heat pumps, construct a road and associated landscaping and infrastructure

This proposal has been considered against relevant development plan policies and has been judged to comply. There have been no objections and any matters raised by consultees have been addressed by planning conditions. There are no other material considerations that warrant a decision other than approval. Full details of the proposal, plans and consultation replies can be viewed via the Online Planning facility on the Orkney Islands Council web site.

Reasons for approval or refusal:	It is proposed to erect 10 houses, comprosing two detaches houses, two pairs of semi-detaches houses, and a terrace of four houses. The site is adjacent to and woidl be acced form cairston Road. The development would comprise appropriate landscaping, management of surface water, and appropriate upgrades to footways and means of walking, wheeling and cycling, either by embedded design or subject to condition.
	The site is within the settlement boundary of Stromness. It is allocated in the Local Development Plan as short-term hosing allocation STR-5. Supplementary Guidance 'Settlement Statements' (2017) requires development of this allocation to include provision of vehicular access to allocation STR-3, which would be included as proposed. The site has an indicative capacity of five houses; however, the layout and detailed design are of sufficient merit to justify the higher density and number of units provided, including the key requirement that the application includes the layout of the entirety of the allocation. The density would be similar to other housing developments nearby, and make efficient use of the land available, whilst still providing adequate communal and private outside amenity space.
	The principle of the development is acceptable in accordance with Policy 5A – Housing and Settlements of the Orkney Local Development Plan 2017, which confirms that the development of housing allocations will be supported where it accords with the relevant settlement statement and any adopted development brief.
	Access and parking
	Roads Services was consulted, and has no objection to the development as proposed, following submission of additional information in relation to earlier comments from Roads Services. The access would be constructed to a standard specification, and the road would be required to be completed prior to occupation of any of the houses. To ensure connection with later parts of the development/allocated land, the road construction would allow a continuation of the road network into the adjoining field.
	As a development within the settlement boundary, it would be required to construct public footway along the roadside boundary of the application site, including necessary drainage and street lighting ducting (and amendment to the street lighting column that would be affected), in conjunction with reconstruction of the existing dry stone wall.
	The application is therefore considered to comply with Policy 14C – Road Network Infrastructure of the Orkney Local Development Plan 2017.

Surface water drainage

The significant delay in determination of the application was to secure appropriate surface water drainage calculations and specification. This includes the discharge to the adjacent burn, which flows under the public road. Engineering Services has confirmed that satisfactory responses have been provided to all previous queries raised regarding the surface water system proposed for the development, and Engineering Services has no objection.

Design and appearance

The proposed development includes a central road, with houses mainly on the west side of the road. A plot is located on each side of the access to the development, both of which are dual fronted to address both Cairston Road and the new road through the site. The remainder of the houses front on to the newly created road. The roadside detached houses are single storey, with the remainder of the development two-storey, comprising two pairs of semi-detached units and a terrace of four houses.

Parking would be a mix of curtilage, on-street parking adjacent to the houses, and some visitor parking, with a turning head, and the future connection referenced above.

As noted above, the development exceeds the allocation within the Local Development Plan, but the Design Statement provides context in relation to the density of development nearby. Areas of relatively dense housing development exist throughout Stromness, not only in the town centre, so it would not be out of character for a development of this density in this location. The arrangement of the houses provides a simple layout, reflective of the adjacent housing development. Proposed open space and planting can be enhanced by planning condition.

The palette of materials proposed is a simple mix of white/off-white render with dark tiled roofs with matching facias and soffits, and grey windows and doors.

In relation to Policy 1, part (i), the development is considered to take into consideration the location and wider townscape character, and in relation to part (ii), the proposed density is appropriate to the application. Policy 2 requires that development must reinforce the distinctive identity of Orkney's built environment and be sympathetic to the character of the local area and have a positive or neutral effect on the appearance of the area. In relation to the scale, form, massing, proportions, materials, layout, density and landscaping of the proposed housing, the application is considered to accord with Policy 2 of the Orkney Local Development Plan 2017. In a wider landscape context, the development would protect the overall integrity of the Hoy and West Mainland National Scenic Area and have no adverse impact on its special qualities, in accordance with Policy 9G – Landscape of the Orkney Local Development Plan 2017.

Residential Amenity

The houses are designed to face into the proposed new street, or the existing public road. Windows would be included in the rear elevations of the houses; the alignment and footprint of the proposed houses have been designed to ensure that none of the proposed windows would directly face and be within 21 metres of any windows of any existing neighbouring properties. The proposed houses are an adequate distance from neighbouring houses that there would be no unacceptable impact in relation to sunlight or daylight. Construction noise and disruption would be controlled by planning condition.

The application is considered to comply with Policies 1(iv) and 2(ii) of the Orkney Local Development Plan 2017, by ensuring that the amenity of the surrounding area would be preserved with no unacceptable adverse impacts on adjacent and nearby properties, and by ensuring a positive or neutral effect on the amenity of the area.

Affordable Housing
Policy 5B requires that "All housing proposals within Orkney's settlements must demonstrate that they have considered and incorporated housing types and tenures which meet local housing requirements as outlined in relevant settlement statements, developments brief and masterplans". There is no set number or proportion of units that would have to be delivered as affordable units by this policy provision, and it is a matter for the developer to reach agreement with the Planning Authority, in consultation with Housing Services, in relation to local housing requirements and the number and tenure of affordable units to be provided. It is available to the developer during that correspondence to provide a viability assessment; this would be addressed by planning condition.
Conclusion
The development is acceptable in principle, as development of an allocated site within the settlement boundary of Stromness. Management of surface water has been adequately addressed. Roads Services has no objections. Representations have been received. The development is considered to accord with Policies 1, 2, 5A, 9G and 14C of the Orkney Local Development Plan 2017, and the relevant provisions of National Planning Framework 4.

Delegated decision:

RECOMMENDATION

GRANT SUBJECT TO CONDITIONS

CONDITIONS

Duration of consent

01. The development hereby approved to which this planning permission relates must be begun not later that the expiration of three years, beginning with the date on which the permission is granted, which is the date of this decision notice. If development has not commenced within this period, this planning permission shall lapse.

Reason: In accordance with Section 58 of the Town and Country Planning (Scotland) Act 1997, as amended, which limits the duration of planning permission.

Construction Method Statement

02. No development, including any site clearance works, shall commence until a Construction Method Statement has been submitted to, and approved in writing by, the Planning Authority. The statement shall provide for:

- The means of access to and from the site for plant, machinery and all construction traffic.
- Parking of vehicles of site operatives and visitors.
- Loading and unloading of plant and materials.
- Construction compound.
- Welfare facilities.
- Storage of plant and materials used in constructing the development.
- Stockpiling of soils.
- The erection and maintenance of security hoarding.
- Construction lighting.
- Measures to control the emission of dust and dirt during construction.
- A scheme for recycling/disposing of waste resulting from demolition and construction works.
- Where relevant in terms of occupation, the phasing of the development.

For the avoidance of doubt there shall be no burning or burying of waste within the site.

Thereafter, and throughout all construction phases, the site and development shall be undertaken wholly in accordance with the approved Construction Method Statement.

Reason: To safeguard the amenity of neighbouring properties and occupants.
Landscaping

03. Notwithstanding the details included within the site plan hereby approved, no development shall commence until a Scheme of Landscaping for all hard and soft landscaping is submitted to, and approved in writing by, the Planning Authority, including substantial tree planting surrounding the amenity space to the south of the site. The Scheme of Landscaping shall include:

- The location of all proposed tree, shrub, hedging and grass planting.
- A planting schedule comprising layout, number, density, species, height of all trees and shrubs and seed mix of all grass areas.
- The location, design (including height where applicable) and materials of all hard landscaping works, including walls, retaining walls, fences and gates.
- A timescale for implementation and completion of all soft and hard landscaping contained in the Scheme of Landscaping, including all tree and shrub planting in the first planting season following commencement of development. All roads, footpaths, parking, bin storage and all other hard landscaping shall be completed wholly in accordance with approved details prior to first occupation of any residential unit within the development.

All soft and hard landscaping shall be carried out wholly in accordance with the approved Scheme of Landscaping, unless otherwise agreed, in writing, with the Planning Authority.

Any tree or shrub planting which, within a period of five years from planting, in the opinion of the Planning Authority, is dead, dying, diseased or severely damaged, shall be replaced by a tree or shrub of similar size and species to that originally planted, unless otherwise agreed, in writing, with the Planning Authority.

Thereafter, the development shall be maintained in accordance with the details included in the Scheme of Landscaping throughout the lifetime of the development.

Reason: To protect the character and appearance of the area and residential amenity.

EV chargers

04. In conjunction with landscaping details submitted in pursuance of condition 03, no development shall commence until full details of not less than four electric vehicle chargers within the application site, and infrastructure for future installation of further chargers at each parking bay, are submitted to and agreed, in writing, by the Planning Authority. Thereafter, the electric vehicle chargers and infrastructure shall be provided in accordance with the approved details prior to first occupation of any part of the development.

Reason: To ensure adequate provision of electric vehicle charging infrastructure.

Access

05. The development shall not be brought into use until the junction of the access hereby approved with the public road has been constructed to the Council's Roads Services standard 'Carriageway Construction', attached to and forming part of this decision notice, and in accordance with the dimensions included in the site plan hereby approved.

Any damage caused to the existing road infrastructure during construction of the development shall be repaired prior to first occupation of the development, to the satisfaction of the Planning Authority, in conjunction with Roads Services.

Reason: In the interests of road safety.

Complete roads and footpaths

06. No house within the development hereby approved shall be occupied until the full extent of approved road and footpath surface has been completed to full construction including the final wearing surface, unless an alternative phased approach to occupation is approved under the terms of condition 02.

Reason: To ensure that an adequate level of access is timeously provided for the development; in the interests of road safety and amenity.

Footway

07. No development shall commence until full details of a footway across the Cairston Road frontage of the site have been submitted to and approved, in writing, by the Planning Authority. These details shall include:

- The extent of the footway from the south corner of the site adjoining the third-party access, to the east corner of the site adjacent to Karlea, comprising the whole frontage of the application site with Cairston Road, other than the approved access.
- Full construction details of the footway, which shall be not less than 1.8 metres wide, to a standard Roads Services footway construction.
- Location and full construction details of pedestrian crossing points.
- Associated street lighting, including any alterations to existing street lighting columns.

- Any drainage included within the footway construction.
- Construction (including replacement of the existing wall where relevant) of a dry stone wall along the length of the back edge of the footway.

Thereafter, the development shall be completed wholly in accordance with approved details prior to first occupation of any house, unless otherwise approved, in writing, under the provisions of condition 06.

Reason: In the interests of road safety, and as the development of an allocated housing site within the settlement boundary.

Link to future development

08. No development shall commence until full details of the 'Potential Future Connection' at the north-west boundary of the application site have been submitted to and approved, in writing, by the Planning Authority. Notwithstanding details included in the site plan, the submitted details shall include construction of the road and footway to the property boundary, including service ducting and future foul and surface water drainage connections where relevant, so that development of the adjoining land can include continuation of the road and footway with no further works required within the current application site area. No construction detail shall inhibit future free access from the application site to the adjoining land. Thereafter, the 'Potential Future Connection' shall be constructed wholly in accordance with approved details prior to first occupation of any house, unless otherwise approved, in writing, under the provisions of condition 06.

Reason: To ensure access to other allocated land, to ensure connectivity within the settlement.

SuDS

09. Prior to occupation of any part of the development hereby approved, all surface water drainage works hereby approved, shall be constructed wholly in accordance with the approved drawings and submitted documents, including the 'Drainage Report' dated March 2024. Thereafter, and throughout the lifetime of the development, the drainage shall be maintained in accordance with the approved details, and in accordance with the principles of Sustainable Drainage Systems (SuDS) and be compliant with the guidance set out in the CIRIA SuDS Manual C753.

Reason: To ensure the provision of an adequate surface water drainage system and to accord with Policy 13B - Sustainable Drainage Systems (SuDS) of Orkney Local Development Plan 2017.

Maintenance and Management Schedule

10. No development shall commence until a Maintenance and Management Schedule is submitted to, and approved in writing by, the Planning Authority. This Schedule shall include:

- Confirmation of maintenance responsibilities and arrangements for all surface water devices, roads, footways and landscaping.
- Full maintenance details, including a maintenance schedule, of all roads and footways.
- Full maintenance details, including a maintenance schedule, of all surface water devices, including permeable paving.
- A maintenance schedule for all surface water devices.

The approved Maintenance and Management Schedule shall be applied and complied with throughout the lifetime of the development.

Reason: To ensure the proper maintenance and management of surface water devices, roads and footways and landscaping in perpetuity.

Affordable housing

11. No development shall commence until details of affordable housing provision have been submitted to, and agreed in writing by, the Planning Authority, in conjunction with Housing Services. These details shall include consideration and incorporation of housing types and tenures which meet local housing requirements and phasing of the development, and/or a viability assessment. Thereafter, the development shall be delivered wholly in accordance with all agreed details.

Reason: To ensure the development meets local housing requirements in accordance with Policy 5B of the Orkney Local Development Plan 2017.

ASHP noise

12. Total noise from each of the Air Source Heat Pumps installed shall not exceed NR25 within any residential property outwith the development, where NR25 is the Noise Rating Curve at 25, (noise measurements to be made with a window of any residential property outwith the development open no more than 50 mm).

Reason: To protect any nearby residents from excessive noise disturbance from the air source heat pumps.

Foul drainage connection

13. Prior to the dwellings hereby approved being occupied and brought into first use, they shall be connected to Scottish Water's public waste water system.

Reason: In the interests of environmental protection and to accord with Policy 13C - Waste Water Drainage of Orkney Local Development Plan 2017.

Materials

14. Notwithstanding details included in the elevations hereby approved, all fascias, soffits, windows, and weatherboard cladding shall be dark/anthracite grey.

Reason: To ensure continuity of design through the development, to match the colours specified in the two houses at the entrance to the development, as indicated in the submitted visualisation.

Hours of construction

15. Hours of construction work on site involving the use of machinery and powered tools, or any other operation, for example hammering, that would generate noise audible beyond the boundary of the site, shall only take place between the hours of 07:30 and 19:00 Mondays to Fridays, 09:00 to 17:00 Saturdays, and not at all on Sundays or the Christmas or New Year Public Holidays, unless otherwise agreed, in writing, with the Planning Authority.

Reason: To safeguard the amenity of nearby residents.

Mr Jamie Macvie MRTPI Service Manager Date: 5th June 2024 Cameron & Ross Page 1 A/210321 - Cairston Road 15 Victoria Street North - Filter Trench Calc Aberdeen AB10 1XB ΜΙΓΓΠ Date 09/08/2022 Designed by JMA Drainad File A210321 - Filter Trench... Checked by CADS Source Control 2017.1.2 Summary of Results for 30 year Return Period (+35%) Half Drain Time : 5 minutes. Storm Max Max Max Max Max Max Status Level Depth Infiltration Control Σ Outflow Volume Event (m) (m) (1/s) (l/s) (l/s) (m³) 15 min Summer 7.229 0.729 0.0 29.3 29.3 10.7 ΟK 30 min Summer 7.251 0.751 0.0 33.7 33.7 11.0 ОК 33.0 60 min Summer 7.247 0.747 0.0 33.0 11.0 ОК 120 min Summer 7.216 0.716 0.0 26.6 26.6 10.5 ОК 180 min Summer 7.192 0.692 22.0 0.0 22.0 10.2 ОК 240 min Summer 7.176 0.676 0.0 18.9 18.9 9.9 ОК 360 min Summer 7.149 0.649 0.0 15.0 15.0 9.5 ОК 480 min Summer 7.133 0.633 0.0 12.7 12.7 9.3 ОК 11.1 11.1 600 min Summer 7.124 0.624 0.0 9.1 ОК 720 min Summer 7.118 0.618 0.0 9.8 9.8 9.0 ОК 960 min Summer 7.109 0.609 0.0 8.2 8.2 8.9 ОК 1440 min Summer 7.095 0.595 0.0 6.2 6.2 8.7 ΟК 2160 min Summer 7.082 0.582 0.0 4.8 4.8 8.5 ОК 2880 min Summer 7.075 0.575 4.0 0.0 4.0 8.4 ОК 4320 min Summer 7.065 0.565 0.0 3.0 8.3 3.0 ОК 5760 min Summer 7.059 0.559 0.0 2.5 2.5 8.2 ΟК 0.0 7200 min Summer 7.054 0.554 2.1 2.1 8.1 ОК 8640 min Summer 7.051 0.551 0.0 1.9 1.9 8.0 ОК 10080 min Summer 7.049 0.549 0.0 1.7 1.7 8.0 OK 15 min Winter 7.249 0.749 0.0 33.3 33.3 11.0 ΟК Storm Rain Flooded Discharge Time-Peak (mm/hr) Volume Volume Event (mins) (m³) (m³)

				(111)	()		
15	min	Summer	56.548	0.0	16.5	16	
30	min	Summer	39.673	0.0	26.0	23	
60	min	Summer	26.745	0.0	37.6	38	
120	min	Summer	17.385	0.0	51.1	68	
180	min	Summer	13.417	0.0	60.3	98	
240	min	Summer	11.137	0.0	67.6	128	
360	min	Summer	8.542	0.0	78.8	188	
480	min	Summer	7.068	0.0	87.7	246	
600	min	Summer	6.098	0.0	95.2	306	
720	min	Summer	5.403	0.0	101.6	368	
960	min	Summer	4.463	0.0	112.7	484	
1440	min	Summer	3.406	0.0	130.0	730	
2160	min	Summer	2.598	0.0	149.9	1080	
2880	min	Summer	2.144	0.0	165.6	1444	
4320	min	Summer	1.634	0.0	190.3	2180	
5760	min	Summer	1.346	0.0	209.9	2920	
7200	min	Summer	1.158	0.0	226.2	3672	
8640	min	Summer	1.024	0.0	240.5	4264	
10080	min	Summer	0.923	0.0	253.2	5072	
15	min	Winter	56.548	0.0	19.3	16	
		©198	32-2017	XP Solu	tions		

Cameron & Ross		Page 2
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L.
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+35%)

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min N	Winter	7.266	0.766	0.0	36.3	36.3	11.3	ОК
60	min M	Winter	7.238	0.738	0.0	31.1	31.1	10.8	ОК
120	min M	Winter	7.193	0.693	0.0	22.1	22.1	10.2	ОК
180	min M	Winter	7.165	0.665	0.0	17.4	17.4	9.8	ОК
240	min M	Winter	7.145	0.645	0.0	14.5	14.5	9.5	ΟK
360	min 1	Winter	7.125	0.625	0.0	11.2	11.2	9.2	ОК
480	min 1	Winter	7.115	0.615	0.0	9.4	9.4	9.0	ОК
600	min 1	Winter	7.108	0.608	0.0	8.0	8.0	8.9	ΟK
720	min 1	Winter	7.103	0.603	0.0	7.1	7.1	8.8	ОК
960	min 1	Winter	7.092	0.592	0.0	5.9	5.9	8.7	ΟK
1440	min 1	Winter	7.080	0.580	0.0	4.5	4.5	8.5	ОК
2160	min 1	Winter	7.070	0.570	0.0	3.5	3.5	8.3	ОК
2880	min 1	Winter	7.063	0.563	0.0	2.9	2.9	8.2	ОК
4320	min 1	Winter	7.055	0.555	0.0	2.2	2.2	8.1	ОК
5760	min 1	Winter	7.050	0.550	0.0	1.8	1.8	8.0	ОК
7200	min M	Winter	7.046	0.546	0.0	1.5	1.5	8.0	ΟK
8640	min M	Winter	7.043	0.543	0.0	1.4	1.4	7.9	ΟK
10080	min 1	Winter	7.041	0.541	0.0	1.2	1.2	7.9	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	39.673	0.0	30.0	23
60	min	Winter	26.745	0.0	43.0	38
120	min	Winter	17.385	0.0	58.1	68
180	min	Winter	13.417	0.0	68.5	98
240	min	Winter	11.137	0.0	76.5	128
360	min	Winter	8.542	0.0	89.2	190
480	min	Winter	7.068	0.0	99.1	248
600	min	Winter	6.098	0.0	107.5	308
720	min	Winter	5.403	0.0	114.7	372
960	min	Winter	4.463	0.0	127.1	488
1440	min	Winter	3.406	0.0	146.5	736
2160	min	Winter	2.598	0.0	168.7	1092
2880	min	Winter	2.144	0.0	186.4	1444
4320	min	Winter	1.634	0.0	214.1	2184
5760	min	Winter	1.346	0.0	235.9	2856
7200	min	Winter	1.158	0.0	254.3	3648
8640	min	Winter	1.024	0.0	270.2	4368
10080	min	Winter	0.923	0.0	284.4	5088

Cameron & Ross							Page 3
15 Victoria Street		A/21	0321 - Ca	irston	Road		
Aberdeen		Nort	ch - Filte	4			
AB10 1XB							Micco
Date 09/08/2022		Desi	gned by J	MA			
File A210321 - Filter	Trench	Cheo	cked by				Diamada
CADS		Soui	ce Contro	1 2017	.1.2		
	F	ainfa	ll Details				
Rainfall M Return Period (M	Model		FSR 30		Winter	Storms	Yes 0 750
Recultin refford (ye	egion Scoti	land an	d Ireland		Cv (N	inter)	0.840
M5-60	(mm)		13.000 Sł	hortest	Storm	(mins)	15
Rat Summer St	tio R		0.250	Longest	Storm	(mins)	10080
Summer St	LOTINS		Ies	CII	lliate th	aliye s	+35
	<u>T</u>	ime Ar	ea Diagran	<u>n</u>			
	Тс	tal Are	ea (ha) 0.22	4			
Time (min From: To	s) Area : (ha) H	Time (From:	mins) Area To: (ha)	Time From:	(mins) To:	Area (ha)	
0	4 0.074	4	8 0.075	8	12	0.075	
	Ι			I			
	©198	2-2017	XP Solut	ions			
	GT 20,	/ _ /	III DOTUL				

Cameron & Ross	Page 4	
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L.
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamacje
CADS	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.500

Filter Drain Structure

Infiltration Coefficient Base (m/hr)0.00000Pipe Diameter (m)0.225Infiltration Coefficient Side (m/hr)0.0000Pipe Depth above Invert (m)0.000Safety Factor2.0Slope (1:X)150.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)6.500Cap Infiltration Depth (m)0.000Trench Width (m)5.0Number of Pipes1Trench Length (m)10.010.010.0

Pipe Outflow Control

Diameter (m)	0.225	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	13.500	Upstream Invert Level (m)	7.000
Roughness k (mm)	0.600		

Cameron & Ross					Page 1				
15 Victoria Street		A/210321 -	Cairston	Road					
Aberdeen		North - Fi	4						
AB10 1XB					Micco				
Date 09/08/2022									
File	File Checked by								
CADS									
Summary of	E Results fo	or 200 year	r Return P	eriod (+35%)					
					_				
	Half Dr	ain Time : 4	minutes.						
Storm	Max Max	Max	Max	Max Max	Status				
Event 1	Level Depth I	Infiltration	Control E C	utflow Volume					
	(m) (m)	(1/s)	(1/s) (1/s) (m ³)					
15 min Summer	7.324 0.824	0.0	43.8	43.8 12.1	ОК				
30 min Summer	7.381 0.881	0.0	50.0	50.0 13.0	ОК				
60 min Summer '	7.374 0.874	0.0	49.3	49.3 12.9	O K				
120 min Summer '	7.291 0.791	0.0	39.7	39.7 11.6	O K				
180 min Summer '	7.247 0.747	0.0	32.9	32.9 11.0	O K				
240 min Summer '	7.223 0.723	0.0	28.1	28.1 10.6	O K				
360 min Summer '	7.193 0.693	0.0	22.1	22.1 10.2	O K				
480 min Summer	7.173 0.673	0.0	18.5	18.5 9.9	O K				
600 min Summer	7.156 0.656	0.0	16.1	16.1 9.6	0 K				
720 min Summer	7.143 0.643	0.0	14.2	14.2 9.4	0 K				
960 min Summer	7.128 0.628	0.0	11.8	11.8 9.2	0 K				
1440 min Summer	7.112 0.612	0.0	8.8	8.8 9.0	ОК				
2160 min Summer	7.099 0.599	0.0	6.6	6.6 8.8	OK				
2880 min Summer	7.088 0.588	0.0	5.5	5.5 8.6	OK				
4320 min Summer	7.076 0.576	0.0	4.1	4.1 8.4	OK				
7200 min Summer	7.009 0.009	0.0	2.4	2.4 0.3	OK				
8640 min Summor	7.005 0.505	0.0	2.9	2.9 0.2	OK				
10080 min Summer	7.059 0.559	0.0	2.5	2.3 8.1	0 K				
15 min Winter	7.370 0.870	0.0	48.9	48.9 12.8	O K				
S ¹	torm R	ain Flooded	d Discharge	Time-Peak					
E	vent (m	m/hr) Volume	Volume	(mins)					
		(m³)	(m³)						
15 m	nin Summer 83	3.965 0.0	28.0	16					
30 m	nin Summer 59	9.880 0.0	43.0	23					
60 m	nin Summer 40	0.721 0.0	61.1	38					
120 m	nin Summer 2	6.227 0.0	80.8	68					

Evenc (iii		(1111) 111)	vorume	vorume	(11115)		
				(m³)	(m³)		
15	min	Summer	83.965	0.0	28.0	16	
30	min	Summer	59.880	0.0	43.0	23	
60	min	Summer	40.721	0.0	61.1	38	
120	min	Summer	26.227	0.0	80.8	68	
180	min	Summer	20.088	0.0	94.0	98	
240	min	Summer	16.566	0.0	104.0	128	
360	min	Summer	12.577	0.0	119.5	188	
480	min	Summer	10.324	0.0	131.5	248	
600	min	Summer	8.850	0.0	141.4	308	
720	min	Summer	7.800	0.0	150.0	368	
960	min	Summer	6.386	0.0	164.4	486	
1440	min	Summer	4.811	0.0	186.7	734	
2160	min	Summer	3.624	0.0	211.9	1080	
2880	min	Summer	2.964	0.0	231.7	1460	
4320	min	Summer	2.228	0.0	262.2	2136	
5760	min	Summer	1.817	0.0	285.7	2848	
7200	min	Summer	1.550	0.0	305.2	3552	
8640	min	Summer	1.361	0.0	322.0	4272	
10080	min	Summer	1.219	0.0	336.8	5128	
15	min	Winter	83.965	0.0	32.2	16	
		©19	82-2017	XP Solu	utions		

Cameron & Ross		Page 2
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L.
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 200 year Return Period (+35%)

Storm		Max	Max	Max	Max		Max	Max	Status	
	Event	:	Level	Depth	Infiltration	Control	Σ	Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)		(1/s)	(m³)	
30	min 1	Winter	7.417	0.917	0.0	53.5		53.5	13.5	ОК
60	min M	Winter	7.350	0.850	0.0	46.7		46.7	12.5	ОК
120	min M	Winter	7.249	0.749	0.0	33.3		33.3	11.0	ОК
180	min M	Winter	7.213	0.713	0.0	26.0		26.0	10.5	ОК
240	min M	Winter	7.190	0.690	0.0	21.6		21.6	10.1	ОК
360	min M	Winter	7.160	0.660	0.0	16.6		16.6	9.7	ОК
480	min 1	Winter	7.139	0.639	0.0	13.6		13.6	9.4	ОК
600	min 1	Winter	7.128	0.628	0.0	11.8		11.8	9.2	ОК
720	min 1	Winter	7.120	0.620	0.0	10.3		10.3	9.1	ОК
960	min 1	Winter	7.111	0.611	0.0	8.5		8.5	8.9	ОК
1440	min 1	Winter	7.096	0.596	0.0	6.4		6.4	8.7	ΟK
2160	min 1	Winter	7.082	0.582	0.0	4.8		4.8	8.5	ОК
2880	min 1	Winter	7.075	0.575	0.0	4.0		4.0	8.4	ОК
4320	min 1	Winter	7.065	0.565	0.0	3.0		3.0	8.2	ОК
5760	min 1	Winter	7.058	0.558	0.0	2.4		2.4	8.1	ОК
7200	min 1	Winter	7.053	0.553	0.0	2.1		2.1	8.1	ОК
8640	min 1	Winter	7.050	0.550	0.0	1.8		1.8	8.0	ΟK
10080	min 1	Winter	7.048	0.548	0.0	1.6		1.6	8.0	ОК

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	59 880	0 0	19 0	23
60	min	Winter	40 721	0.0	49.0	20
120	min	Winter	26 227	0.0	91 A	68
180	min	Winter	20.227	0.0	106 1	96
240	min	Winter	16 566	0.0	117 /	128
360	min	Winter	12 577	0.0	13/ 7	196
180	min	Winter	10 324	0.0	1/9 1	246
600	min	Winter	9 950	0.0	150.2	240
720	min	Winter	7 800	0.0	169.9	364
960	min	Winter	6 396	0.0	195.0	100
1440	min	Winter	1 011	0.0	210 0	400
2160	min	Winter	4.011 2.624	0.0	210.0	1002
2160	ш±п ,	winter	3.024	0.0	238.2	1092
2880	min	Winter	2.964	0.0	260.4	1472
4320	min	Winter	2.228	0.0	294.5	2172
5760	min	Winter	1.817	0.0	320.9	2864
7200	min	Winter	1.550	0.0	342.7	3648
8640	min	Winter	1.361	0.0	361.5	4368
10080	min	Winter	1.219	0.0	378.1	4992

15 Victoria S	~										
	Street			A/2	210321	- Ca	irstor	n Road			
Aperaeen				Noi	rth -	Filter	r Trer	nch Cal	lc	4	~
AB10 1XB										M	
Date 09/08/20	022			Des	signed	by JN	Ah				ainago
File				Che	ecked 1	оу					
CADS				Soi	urce C	ontrol	L 2017	1.1.2			
	Rainfa	all Mode	- 1	Rainf	all De	tails FSR		Winter	Storms	Yes	
Retur	n Period	l (years	5)			200		Cv (S	ummer)	0.750	
	M5	Regio 6-60 (mn	on Scot n)	land a	and Irel 13.	and 000 Sh	ortest	Cv (W Storm	(mins)	0.840	
		Ratio	R		0.	250 I	ongest	Storm	(mins)	10080	
	Summe	er Storn	ns			Yes	Cli	mate Ch	ange %	+35	
			<u>1</u>	Time A	Area Di	Lagram	<u>1</u>				
			Т	otal A	rea (ha) 0.22	4				
	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)		
	0	4	0.074	4	8	0.075	8	12	0.075		

Cameron & Ross		Page 4
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L.
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File	Checked by	Diamacje
CADS	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.500

Filter Drain Structure

Infiltration Coefficient Base (m/hr)0.00000Pipe Diameter (m)0.225Infiltration Coefficient Side (m/hr)0.0000Pipe Depth above Invert (m)0.000Safety Factor2.0Slope (1:X)150.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)6.500Cap Infiltration Depth (m)0.000Trench Width (m)5.0Number of Pipes1Trench Length (m)10.010.010.0

Pipe Outflow Control

Diameter (m)	0.225	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	13.500	Upstream Invert Level (m)	7.000
Roughness k (mm)	0.600		

Cameron & R	loss							Page 1
15 Victoria	Street		A/21	0321 -	Cairsto	n Road		
Aberdeen			Nort	h - Fi	4			
AB10 1XB								- Com
D_{2} D_{2} D_{3} D_{3	2022		Dogi	anod b	57 TM7			- Micro
Dale 09/00/	2022		Desi	.gnea b	y oma			Drainarre
File			Chec	cked by	·			
CADS			Sour	cce Con	trol 201	7.1.2		
	Summary o	of Results	for 10)0 year	Return	Period	(+35%	<u>)</u>
		Half	Drain T	ime : 5	minutes.			
	Storm	Max Max	M	ax	Max	Max	Max	Status
	Event	Level Depth	Infilt	ration	Control E	Outflow	Volume	
		(m) (m)	(1	/s)	(1/s)	(1/s)	(m³)	
1.5				0 0	2.0 1	20.1	11 5	0. 77
15	min Summer	7.278 0.778		0.0	38.1	38.1	11.5	OK
30) min Summer	7.320 0.820		0.0	43.3	43.3	12.1	OK
120) min Summer) min Summer	7.314 0.814		0.0	42.7	42.7	12.0	OK
180) min Summer	7 225 0 725		0.0	28 /	28 /	10 6	0 K
240) min Summer	7 204 0 704		0.0	20.4	20.4	10.0	0 K
360) min Summer	7 178 0 678		0.0	19 2	19 2	10.0	0 K
480) min Summer	7 157 0 657		0.0	16 1	16 1	10.0	0 K
600) min Summer	7 142 0 642		0.0	14 0	14 0	9.0	0 K
720) min Summer	7.132 0.632		0.0	12.5	12.5	9.3	0 K
960) min Summer	7.120 0.620		0.0	10.2	10.2	9.1	0 K
1440) min Summer	7.107 0.607		0.0	7.8	7.8	8.9	ОК
2160) min Summer	7.092 0.592		0.0	5.9	5.9	8.7	ОК
2880) min Summer	7.083 0.583		0.0	4.9	4.9	8.5	ОК
4320) min Summer	7.072 0.572		0.0	3.7	3.7	8.4	ОК
5760) min Summer	7.065 0.565		0.0	3.0	3.0	8.3	ОК
7200) min Summer	7.060 0.560		0.0	2.6	2.6	8.2	ОК
8640) min Summer	7.056 0.556		0.0	2.3	2.3	8.1	O K
10080) min Summer	7.053 0.553		0.0	2.0	2.0	8.1	O K
15	i min Winter	7.314 0.814		0.0	42.6	42.6	12.0	0 K
		Storm	Rain	Flooded	1 Discharg	e Time-P	eak	
		Event	(mm/hr)	Volume	Volume	(mins	5)	
				(m³)	(m³)			
	15	min Summer	72.673	0.0	23.	2	16	
	30	min Summer	51.518	0.0	36.	0	23	
	60	min Summer	34.923	0.0	51.	4	38	
	120	min Summer	22.569	0.0	68.	5	68	
	180	min Summer	17.334	0.0	80.	1	98	
	240	min Summer	14.329	0.0) 89.	0	128	

120	111 1 11	Summer	22.309	(0.0	00.	• J	00
180	min	Summer	17.334	(0.0	80.	.1	98
240	min	Summer	14.329	(0.0	89.	.0	128
360	min	Summer	10.919	(0.0	102.	. 8	188
480	min	Summer	8.989	(0.0	113.	.5	248
600	min	Summer	7.724	(0.0	122.	.5	308
720	min	Summer	6.821	(0.0	130.	.2	366
960	min	Summer	5.602	(0.0	143.	.3	490
1440	min	Summer	4.241	(0.0	163.	.7	734
2160	min	Summer	3.209	(0.0	186.	.8	1088
2880	min	Summer	2.633	(0.0	205.	.0	1464
4320	min	Summer	1.989	(0.0	233.	.3	2152
5760	min	Summer	1.628	(0.0	255.	.3	2904
7200	min	Summer	1.394	(0.0	273.	.7	3664
8640	min	Summer	1.227	(0.0	289.	.5	4296
10080	min	Summer	1.101	(0.0	303.	.5	5128
15	min	Winter	72.673	(0.0	26.	.9	16
		©198	2-2017	XP S	Solu	utions		

Cameron & Ross		Page 2
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+35%)

	Storm	ı	Max	Max	Max	Max	_	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ	Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
30	min V	Winter	7.348	0.848	0.0	46.5		46.5	12.5	ОК
60	min V	Winter	7.295	0.795	0.0	40.3		40.3	11.7	ОК
120	min V	Winter	7.226	0.726	0.0	28.6		28.6	10.7	ОК
180	min V	Winter	7.195	0.695	0.0	22.4		22.4	10.2	ОК
240	min V	Winter	7.174	0.674	0.0	18.7		18.7	9.9	ОК
360	min V	Winter	7.144	0.644	0.0	14.3		14.3	9.4	ОК
480	min V	Winter	7.128	0.628	0.0	11.8		11.8	9.2	ОК
600	min V	Winter	7.120	0.620	0.0	10.2		10.2	9.1	ОК
720	min V	Winter	7.113	0.613	0.0	9.0		9.0	9.0	ОК
960	min V	Winter	7.105	0.605	0.0	7.5		7.5	8.9	ОК
1440	min V	Winter	7.090	0.590	0.0	5.6		5.6	8.6	ОК
2160	min V	Winter	7.077	0.577	0.0	4.2		4.2	8.4	ОК
2880	min V	Winter	7.071	0.571	0.0	3.5		3.5	8.3	ОК
4320	min V	Winter	7.061	0.561	0.0	2.7		2.7	8.2	ОК
5760	min V	Winter	7.055	0.555	0.0	2.2		2.2	8.1	ОК
7200	min V	Winter	7.051	0.551	0.0	1.9		1.9	8.0	ОК
8640	min V	Winter	7.048	0.548	0.0	1.6		1.6	8.0	ОК
10080	min V	Winter	7.045	0.545	0.0	1.5		1.5	8.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0			51 510	0.0	41 0	0.0
30	mın	Winter	51.518	0.0	41.2	23
60	min	Winter	34.923	0.0	58.4	38
120	min	Winter	22.569	0.0	77.6	68
180	min	Winter	17.334	0.0	90.6	98
240	min	Winter	14.329	0.0	100.6	128
360	min	Winter	10.919	0.0	116.0	188
480	min	Winter	8.989	0.0	128.0	246
600	min	Winter	7.724	0.0	138.1	306
720	min	Winter	6.821	0.0	146.7	370
960	min	Winter	5.602	0.0	161.4	488
1440	min	Winter	4.241	0.0	184.2	736
2160	min	Winter	3.209	0.0	210.1	1072
2880	min	Winter	2.633	0.0	230.5	1432
4320	min	Winter	1.989	0.0	262.2	2200
5760	min	Winter	1.628	0.0	286.9	2840
7200	min	Winter	1.394	0.0	307.4	3640
8640	min	Winter	1.227	0.0	325.1	4352
10080	min	Winter	1.101	0.0	340.8	5072

Cameron & Ross		Page 3
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File	Checked by	Diamacje
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainiali Modei Return Period (vears)	100 Cv (Summer) 0.	.750
Region Scotla	and and Ireland Cv (Winter) 0.	.840
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R Summer Storms	Yes Climate Change %	+35
Tir	me Area Diagram	
Tot.	al Area (ha) 0.224	
Time (mins) Area T	ime (mins) Area Time (mins) Area	
From: To: (ha) Fr	com: To: (ha) From: To: (ha)	
0 4 0.074	4 8 0.075 8 12 0.075	
I	I	
©1982-	-2017 XP Solutions	

Cameron & Ross		Page 4
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.500

Filter Drain Structure

Infiltration Coefficient Base (m/hr)0.00000Pipe Diameter (m)0.225Infiltration Coefficient Side (m/hr)0.0000Pipe Depth above Invert (m)0.000Safety Factor2.0Slope (1:X)150.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)6.500Cap Infiltration Depth (m)0.000Trench Width (m)5.0Number of Pipes1Trench Length (m)10.010.010.0

Pipe Outflow Control

Diameter (m)	0.225	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	13.500	Upstream Invert Level (m)	7.000
Roughness k (mm)	0.600		

Cameron & Ross		Page 1
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamacje
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Half Drain Time : 8 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	7 146	0 646	0 0	14 6	14 6	95	ОК
30	min	Summer	7 171	0 671	0.0	18 1	18 1	9.8	0 K
60	min	Summer	7 175	0.675	0.0	18.8	18 8	9.0	0 K
120	min	Summer	7 152	0.652	0.0	15.4	15.0	95	0 K
180	min	Summer	7 134	0.634	0.0	12 9	12 9	9.5 9.3	0 K
240	min	Summer	7 124	0.624	0.0	11 1	11 1	9 1	0 K
360	min	Summer	7 113	0.613	0.0	8 9	8 9	9 0	0 K
480	min	Summer	7 106	0.015	0.0	7 6	7.6	89	0 K
600	min	Summer	7 098	0 598	0.0	6.6	6.6	8.8	0 K
720	min :	Summer	7.092	0.592	0.0	5.9	5.9	8.7	0 K
960	min	Summer	7.083	0.583	0.0	4.9	4.9	8.5	0 K
1440	min	Summer	7 073	0 573	0.0	3.8	3.8	8 4	0 K
2160	min :	Summer	7.064	0.564	0.0	2.9	2.9	8.2	0 K
2880	min	Summer	7.058	0.558	0.0	2.4	2.4	8.1	ОК
4320	min	Summer	7.051	0.551	0.0	1.9	1.9	8.0	ОК
5760	min :	Summer	7.046	0.546	0.0	1.5	1.5	8.0	ОК
7200	min :	Summer	7.043	0.543	0.0	1.3	1.3	7.9	ОК
8640	min	Summer	7.040	0.540	0.0	1.2	1.2	7.9	ОК
10080	min :	Summer	7.038	0.538	0.0	1.1	1.1	7.9	0 K
15	min N	Winter	7.162	0.662	0.0	16.9	16.9	9.7	ОК

	Storm		Rain	Floo	ded	Discharge	Time-Peak	
	Event		(mm/hr)	Volu	me	Volume	(mins)	
				(m ³	•)	(m³)		
15	min	Summer	33.317		0.0	6.7	18	
30	min	Summer	23.154		0.0	12.2	24	
60	min	Summer	15.530		0.0	18.8	38	
120	min	Summer	10.149		0.0	26.8	68	
180	min	Summer	7.867		0.0	32.4	98	
240	min	Summer	6.555		0.0	36.8	128	
360	min	Summer	5.058		0.0	43.7	188	
480	min	Summer	4.204		0.0	49.2	248	
600	min	Summer	3.641		0.0	53.9	308	
720	min	Summer	3.236		0.0	58.0	368	
960	min	Summer	2.686		0.0	64.9	488	
1440	min	Summer	2.065		0.0	76.0	722	
2160	min	Summer	1.587		0.0	88.7	1096	
2880	min	Summer	1.317		0.0	98.9	1452	
4320	min	Summer	1.011		0.0	115.1	2192	
5760	min	Summer	0.838		0.0	127.9	2864	
7200	min	Summer	0.725		0.0	138.8	3592	
8640	min	Summer	0.643		0.0	148.4	4336	
10080	min	Summer	0.582		0.0	156.9	4960	
15	min	Winter	33.317		0.0	8.4	18	
		©198	32-2017	ХР	Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L.
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min N	Winter	7.183	0.683	0.0	20.1	20.1	10.0	ОК
60	min N	Winter	7.169	0.669	0.0	17.9	17.9	9.8	ΟK
120	min N	Winter	7.134	0.634	0.0	12.8	12.8	9.3	ΟK
180	min N	Winter	7.120	0.620	0.0	10.2	10.2	9.1	ΟK
240	min N	Winter	7.111	0.611	0.0	8.6	8.6	8.9	ОК
360	min N	Winter	7.099	0.599	0.0	6.6	6.6	8.8	ΟK
480	min N	Winter	7.089	0.589	0.0	5.5	5.5	8.6	ΟK
600	min N	Winter	7.082	0.582	0.0	4.8	4.8	8.5	ΟK
720	min N	Winter	7.078	0.578	0.0	4.3	4.3	8.4	ΟK
960	min N	Winter	7.071	0.571	0.0	3.6	3.6	8.3	ΟK
1440	min N	Winter	7.062	0.562	0.0	2.7	2.7	8.2	ОК
2160	min N	Winter	7.054	0.554	0.0	2.1	2.1	8.1	ОК
2880	min N	Winter	7.049	0.549	0.0	1.7	1.7	8.0	ОК
4320	min N	Winter	7.043	0.543	0.0	1.3	1.3	7.9	ОК
5760	min N	Winter	7.039	0.539	0.0	1.1	1.1	7.9	ОК
7200	min N	Winter	7.036	0.536	0.0	1.0	1.0	7.8	ОК
8640	min N	Winter	7.034	0.534	0.0	0.9	0.9	7.8	ΟK
10080	min N	Winter	7.032	0.532	0.0	0.8	0.8	7.8	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	23.154	0.0	14.5	24
60	min	Winter	15.530	0.0	21.9	38
120	min	Winter	10.149	0.0	30.9	68
180	min	Winter	7.867	0.0	37.1	96
240	min	Winter	6.555	0.0	42.0	126
360	min	Winter	5.058	0.0	49.8	188
480	min	Winter	4.204	0.0	56.0	250
600	min	Winter	3.641	0.0	61.2	312
720	min	Winter	3.236	0.0	65.8	368
960	min	Winter	2.686	0.0	73.6	490
1440	min	Winter	2.065	0.0	86.0	722
2160	min	Winter	1.587	0.0	100.2	1096
2880	min	Winter	1.317	0.0	111.6	1432
4320	min	Winter	1.011	0.0	129.7	2168
5760	min	Winter	0.838	0.0	144.2	2904
7200	min	Winter	0.725	0.0	156.4	3656
8640	min	Winter	0.643	0.0	167.1	4408
10080	min	Winter	0.582	0.0	176.6	5000

©1982-2017 XP Solutions

Cameron & Ross	Page 3
15 Victoria Street	A/210321 - Cairston Road
Aberdeen	North - Filter Trench Calc
AB10 1XB	Mirro
Date 09/08/2022	Designed by JMA
File A210321 - Filter Trench	Checked by
CADS	Source Control 2017.1.2
Ra	ainfall Details
Rainfall Model	FSR Winter Storms Yes
Return Period (years)	10 Cv (Summer) 0.750
Region Scotl	land and Ireland Cv (Winter) 0.840
M5-60 (mm) Patio P	13.000 Shortest Storm (mins) 15 0.250 Longest Storm (mins) 10080
Summer Storms	Yes Climate Change % +0
<u>Ti</u>	ime Area Diagram
Tot	tal Area (ha) 0.224
Time (mins) Area T From: To: (ha) Fr	Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)
0 4 0.074	4 8 0.075 8 12 0.075
©1982	2-2017 XP Solutions

Cameron & Ross	Page 4	
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamacje
CADS	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.500

Filter Drain Structure

Infiltration Coefficient Base (m/hr)0.00000Pipe Diameter (m)0.225Infiltration Coefficient Side (m/hr)0.0000Pipe Depth above Invert (m)0.000Safety Factor2.0Slope (1:X)150.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)6.500Cap Infiltration Depth (m)0.000Trench Width (m)5.0Number of Pipes1Trench Length (m)10.010.010.0

Pipe Outflow Control

Diameter (m)	0.225	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	13.500	Upstream Invert Level (m)	7.000
Roughness k (mm)	0.600		

©1982-2017 XP Solutions

Cameron & Ross		Page 1
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamacje
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 18 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	7.033	0.533	0.0	0.8	0.8	7.8	ОК
30	min	Summer	7 093	0 593	0.0	6.0	6.0	8 7	0 K
60	min	Summer	7 112	0 612	0.0	8.7	8.7	89	0 K
120	min	Summer	7 112	0 612	0.0	8.8	8.8	9.0	0 K
180	min	Summer	7 106	0 606	0.0	7 6	7.6	8 9	0 K
240	min	Summer	7.098	0.598	0.0	6.6	6.6	8.8	0 K
360	min	Summer	7 087	0 587	0.0	5 4	5 4	8.6	0 K
480	min	Summer	7 080	0 580	0.0	4 6	4 6	8 5	0 K
600	min	Summer	7.076	0.576	0.0	4.1	4.1	8.4	0 K
72.0	min	Summer	7.072	0.572	0.0	3.7	3.7	8.4	ОК
960	min	Summer	7.066	0.566	0.0	3.1	3.1	8.3	ΟK
1440	min	Summer	7.058	0.558	0.0	2.4	2.4	8.1	ОК
2160	min	Summer	7.051	0.551	0.0	1.9	1.9	8.0	ОК
2880	min	Summer	7.047	0.547	0.0	1.6	1.6	8.0	ОК
4320	min	Summer	7.041	0.541	0.0	1.3	1.3	7.9	ОК
5760	min	Summer	7.038	0.538	0.0	1.1	1.1	7.8	ОК
7200	min	Summer	7.035	0.535	0.0	0.9	0.9	7.8	ОК
8640	min	Summer	7.033	0.533	0.0	0.8	0.8	7.8	ОК
10080	min	Summer	7.031	0.531	0.0	0.7	0.7	7.7	ОК
15	min M	Winter	7.063	0.563	0.0	2.9	2.9	8.2	ОК

	Storm		Rain	Floc	ded	Dischar	ge	Time-Peak	
	Event		(mm/hr)	Vol	ume	Volum	Э	(mins)	
				(m	3)	(m³)			
15	min	Summer	19.000		0.0	0	.7	24	
30	min	Summer	13.218		0.0	3	.8	28	
60	min	Summer	8.918		0.0	7	.7	42	
120	min	Summer	5.920		0.0	12	.6	68	
180	min	Summer	4.641		0.0	16	.1	98	
240	min	Summer	3.903		0.0	18	.9	128	
360	min	Summer	3.055		0.0	23	.5	188	
480	min	Summer	2.569		0.0	27	.2	248	
600	min	Summer	2.246		0.0	30	.4	308	
720	min	Summer	2.013		0.0	33	.3	368	
960	min	Summer	1.694		0.0	38	.3	490	
1440	min	Summer	1.326		0.0	46	.2	734	
2160	min	Summer	1.034		0.0	55	.2	1080	
2880	min	Summer	0.866		0.0	62	.5	1464	
4320	min	Summer	0.675		0.0	74	.4	2140	
5760	min	Summer	0.566		0.0	84	.1	2864	
7200	min	Summer	0.494		0.0	92	.3	3672	
8640	min	Summer	0.441		0.0	99	.4	4288	
10080	min	Summer	0.401		0.0	105	.8	5128	
15	min	Winter	19.000		0.0	1	.7	21	
		©198	32-2017	ХР	Sol	utions			

Cameron & Ross		Page 2
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min N	Winter	7.108	0.608	0.0	8.0	8.0	8.9	ОК
60	min N	Winter	7.116	0.616	0.0	9.6	9.6	9.0	ОК
120	min N	Winter	7.105	0.605	0.0	7.5	7.5	8.9	ΟK
180	min N	Winter	7.093	0.593	0.0	6.0	6.0	8.7	ОК
240	min N	Winter	7.085	0.585	0.0	5.1	5.1	8.5	ОК
360	min N	Winter	7.075	0.575	0.0	4.0	4.0	8.4	ОК
480	min N	Winter	7.070	0.570	0.0	3.4	3.4	8.3	ОК
600	min N	Winter	7.065	0.565	0.0	3.0	3.0	8.2	ОК
720	min N	Winter	7.061	0.561	0.0	2.7	2.7	8.2	ОК
960	min N	Winter	7.056	0.556	0.0	2.3	2.3	8.1	ОК
1440	min N	Winter	7.050	0.550	0.0	1.8	1.8	8.0	ОК
2160	min N	Winter	7.043	0.543	0.0	1.4	1.4	7.9	ОК
2880	min N	Winter	7.040	0.540	0.0	1.2	1.2	7.9	ОК
4320	min N	Winter	7.035	0.535	0.0	0.9	0.9	7.8	ΟK
5760	min N	Winter	7.032	0.532	0.0	0.8	0.8	7.8	ОК
7200	min N	Winter	7.029	0.529	0.0	0.7	0.7	7.7	ОК
8640	min N	Winter	7.027	0.527	0.0	0.6	0.6	7.7	ΟK
10080	min N	Winter	7.025	0.525	0.0	0.5	0.5	7.7	ОК

Storm			Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume Volume		(mins)	
				(m³)	(m³)		
2.0			12 010	0 0	F 1	07	
30	min	winter	13.218	0.0	5.1	21	
60	min	Winter	8.918	0.0	9.5	40	
120	min	Winter	5.920	0.0	15.0	68	
180	min	Winter	4.641	0.0	18.9	98	
240	min	Winter	3.903	0.0	22.1	128	
360	min	Winter	3.055	0.0	27.2	186	
480	min	Winter	2.569	0.0	31.4	248	
600	min	Winter	2.246	0.0	35.0	310	
720	min	Winter	2.013	0.0	38.2	368	
960	min	Winter	1.694	0.0	43.7	492	
1440	min	Winter	1.326	0.0	52.6	732	
2160	min	Winter	1.034	0.0	62.7	1108	
2880	min	Winter	0.866	0.0	70.9	1452	
4320	min	Winter	0.675	0.0	84.2	2216	
5760	min	Winter	0.566	0.0	95.0	2912	
7200	min	Winter	0.494	0.0	104.2	3576	
8640	min	Winter	0.441	0.0	112.2	4288	
10080	min	Winter	0.401	0.0	119.4	5008	

©1982-2017 XP Solutions

Cameron & Ross	Page 3
15 Víctoria Street	A/210321 - Cairston Road
Aberdeen	North - Filter Trench Calc
AB10 1XB	Mirco
Date 09/08/2022	Designed by JMA
File A210321 - Filter Trench	Checked by
CADS	Source Control 2017.1.2
Ra	infall Details
Rainfall Model	FSR Winter Storms Yes
Return Period (years)	1 Cv (Summer) 0.750
Region Scotla	and and Ireland Cv (Winter) 0.840
MO-60 (mm) Ratio R	0 250 Longest Storm (mins) 15
Summer Storms	Yes Climate Change % +0
Г Tin	me Area Diagram
Tota	al Area (ha) 0.224
Time (mins) Area Ti From: To: (ha) Fr	ime (mins) Area Time (mins) Area com: To: (ha) From: To: (ha)
0 4 0.074	4 8 0.075 8 12 0.075
©1982-	-2017 XP Solutions

Cameron & Ross		Page 4
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamacje
CADS	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.500

Filter Drain Structure

Infiltration Coefficient Base (m/hr)0.00000Pipe Diameter (m)0.225Infiltration Coefficient Side (m/hr)0.0000Pipe Depth above Invert (m)0.000Safety Factor2.0Slope (1:X)150.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)6.500Cap Infiltration Depth (m)0.000Trench Width (m)5.0Number of Pipes1Trench Length (m)10.010.010.0

Pipe Outflow Control

Diameter (m)	0.225	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	13.500	Upstream Invert Level (m)	7.000
Roughness k (mm)	0.600		

©1982-2017 XP Solutions

Cairston Road North (STR-5), Stromness

Proposed development of 10no. Residential houses

Design Statement

INTRODUCTION

This design statement has been prepared on behalf of Orkney Builders (Contractors) Ltd in support of a planning application for 10 no. Residential houses at Cairston Road, Stromness.

The application site is shown in a red boundary line on the adjacent map, which highlights its location at the north end of main Stromness settlement and its proximity to existing housing developments, Stromness Primary School and Stromness Academy, both located within 5 minutes walking distance of the site.

The site is located in a predominantly residential area within walking distance of Stromness Town Centre. Local amenities include a doctors surgery, dentist, bank, Co-op along with a range of other services.

VIEW OF SITE LOOKING NORTH-EAST ALONG CAIRSTON ROAD

VIEW OF SITE LOOKING SOUTH-WEST ALONG CAIRSTON ROAD

VIEW OF SITE LOOKING NORTH-WEST FROM GARSON DRIVE

Bracewell Stirling CONSULTING

POLICY BACKGROUND & CONTEXT

Within the Orkney Islands Local Plan the site is designated for housing development, under land allocation STR-5. The extract on the right is taken from the Orkney Islands Local Plan shows the entirety of the Stromness development plan designations, which highlights the requirement for housing throughout the town.

The proposed site sits to the north of the main Stromness settlement and is adjacent to existing housing, small commercial sites and the new Stromness Academy. There are existing housing settlements to the east of the site and to the south of the A965.

Figure 1 is an extract taken from Page 85 of the Stromness Urban Design Framework and shows the area highlighted as a secondary area for new housing with the site proposed as a new lower density housing development within the Stromness area. As the proposals are in respect of a residential housing development, a design statement is required in accordance with the Urban Design Framework for Stromness.

FIGURE 1 - Extract from Stromness Urban Design Framework

(CONTRACTORS) LTD

3

SITE CONTEXT

The site is located to the north of Cairston Road and is surrounded on all three sides by existing development which provides a degree of shelter. Land use along Cairston Road includes buildings which vary in mix from residential housing to light industrial buildings and it is considered the proposed residential development will sit well within the existing site context.

The site is well located to encourage access to local facilities by foot. For this reason, pedestrian accessibility will form a major element in the design of the internal road and footpath network which will link directly to the existing provision on Cairston Road. This will afford the development excellent walking accessibility with safe and direct routes to Stromness Primary School, Stromness Academy and other local amenities which are all located within a short walking distance from the site.

The proposed footway links within the development will also provide access to the existing bus stop located on Cairston Road with bus services providing good public transport accessibility from the proposed development to the town centre and surrounding areas.

The majority of the site is currently being utilised as a site compound including material laydown and parking associated with the adjacent residential development works currently being undertaken on the opposite side of the road.

4

SITE CONSTRAINTS / OPPORTUNITIES

There are a number of constraints and opportunities which have been taken into consideration whilst informing the development proposals, these are as follows:

Constraints:

- The site has a gradual slope from the north east boundary down to the south west.
- Existing combined sewer running north to south through the site will require to be diverted.
- Existing housing to north, east and west of site appropriate offset to be provided.
- Allow for potential future connection through to future development site to north-west of site.

Opportunities:

- Create pleasant and attractive new access gateway into site from Cairston Road.
- Provide development frontage onto Cairston Road consistent with existing site context.
- Retain existing stone wall to edge of Cairston Road.
- The site will benefit from solar gain for much of the day.
- The site is not considered to be at risk of flooding and any development on the site is unlikely to increase flood risk elsewhere.

5

SITE ANALYSIS

The boundary edges of the proposed site address different situations and must therefore respond accordingly.

- Street frontage: The front of the site addresses the street frontage to Cairston Road. It is important for any new development to address the existing street elevation and respond in a sympathetic manner.
- Vehicular and Pedestrian Access: Access into the site is proposed off Cairston Road connecting to the existing network.
- Existing Housing: Existing housing is located close to the edges of the northern and eastern boundary. Issues of overlooking and distance to neighbouring boundaries are to be addressed through the site layout of the proposed.
- Scale & Density: The density of the proposed houses will be similar to the nearby existing developments and will follow a similar development pattern whilst also being sympathetic to adjacent development.
- Boundary Treatment: there is existing low level walling following the edge of the public footpath, the proposal is to retain this to ensure the development proposals are well integrated and consistent with the existing street character.
- Greenspace: Opportunities to introduce amenity space within the application site to ensure the proposals are well integrated into the existing development.
- Public buildings: Close proximity to public buildings, with the public swimming pool to the north west and both primary and secondary schools within 10 minutes walking distance of the site.
- Town centre & services: To the south-west of the site a newly opened Co-op supermarket will provide services for any new housing development off Cairston Road. Further south along Ferry Road the historic core of the town can be accessed within a 15 minute walk or by bus.

EXISTING PROPERTIES INCLUDE WINDOWS AND ARE LOCATED CLOSE TO SITE BOUNDARY, ADEQUATE OFFSET IS PROVIDED FROM BOUNDARY

> BUILDING FOOTPRINTS TO A SIMILAR SCALE AND DENSITY TO EXISTING HOUSING

> > EXISTING STONE WALL TO EDGE OF CAIRSTON ROAD TO BE RETAINED WHERE POSSIBLE AND MADE GOOD

> > FEATURE GABLE REQUIRED TO ADDRESS CAIRSTON ROAD

PROPOSED SITE ACCESS ROAD

DESIGN RESPONSE

- Low level stone walling feature to be retained along front to match existing and create cohesive appearance along the street elevation.
- Bungalows addressing Cairston Road following the form of adjacent properties with a wide frontage and shallow plan.
- Bungalows also addressing the new access road and entrance into the site.
- Where possible new dwellings positioned in such a way that will not disturb the key views of neighbouring properties.
- A simple palette of materials will be adopted throughout the development following the local vernacular of materials. The house types will include white roughcast to external walls with flat concrete interlocking tiles to roofs.
- A mix of dwellings are proposed to meet the demand of house types in the Stromness area. Two and three bed villas offset from one another to avoid overlooking.
- Adopted access road with gentle kink to reduce speed of car movement. Adoptable roads design will follow guidance from OIC Roads Department
- Bungalows located at the termination of the access road in keeping with the existing street character on Cairston Road.

*NOTE—Site layout is indicative for Site Development Statement. Plot layouts and footprints may change at detailed planning stage.

Bracewell Stirling CONSULTING

ORKNEY BUILDERS

EXISTING PROPERTIES INCLUDE WINDOWS AND ARE LOCATED CLOSE TO SITE BOUNDARY, ADEQUATE OFFSET IS PROVIDED FROM BOUNDARY

> BUILDING FOOTPRINTS TO A SIMILAR SCALE AND DENSITY TO EXISTING HOUSING WITH HOUSE TYPES ALSO UTILISED ON ADJACENT DEVELOPMENTS

> > LOW LEVEL STONE WALLING TO FRONT TO MATCH EXISTING — CREATES A COHESIVE APPEARANCE TO THE STREET ELEVATION

FEATURE GABLE INCLUDING WINDOW ONTO CAIRSTON ROAD

ADOPTED ACCESS ROAD WITH TURNING HEAD

HOUSING DENSITY ANALYSIS

The diagram to the right shows the comparison in housing density between the application site and nearby existing developments. It should be noted that the neighbouring development to the south of Cairston Road includes a higher density layout when compared to the proposed development.

The requirements of land allocation STR-5 within the Stromness settlement statement confirms the site has capacity for 5 houses (equivalent to 10 units per hectare). Whilst planning policy considerations are respected, a development with an increased number of units is considered to be more appropriate for this location given the proximity to nearby schools, local businesses and existing amenities with people more likely to consider more sustainable modes of travel. The development proposals acknowledge this by including a mix of varying housing typologies which also looks to address demand for lower cost housing in comparison to larger, more expensive houses.

Whilst housing densities are a useful way of determining the impact of a development on neighbouring areas, they only really consider one factor when considering the layout. In terms of scale and proportion of the individual house types, consideration should also be given to the comparisons in plot coverage between various house types (for e.g. a single bungalow unit is to a similar footprint when compared to a terraced block of 4 units - please refer to below visuals for direct comparison).

The development footprints are also to a similar scale and size to existing neighbouring properties. The scale and density of the proposed development is therefore considered appropriate within the context of the site with consideration also given to the existing site topography and landscape setting.

*NOTE - Approx. density' shown on plan (units per hectare).

TERRACED UNIT OF 4

SINGLE BUNGALOW

HOUSING TYPOLOGY COMPARISON

Bracewell Stirling CONSULTING

STREETSCENE / 3D VISUALS

VIEW LOOKING NORTH-EAST ALONG CAIRSTON ROAD

VIEW LOOKING NORTH-WEST FROM GARSON DRIVE

VIEW LOOKING WEST ALONG CAIRSTON ROAD

VIEW OF TERRACED BLOCK LOOKING SOUTH-WEST

Bracewell Stirling CONSULTING

COMPLIANCE WITH POLICY

Within the Orkney Islands Local Development Plan, the following criteria and key design principles have been followed which demonstrate why the chosen development proposals is suitable for the application site.

Consideration has also been given to the relevant national policy and guidance documents, including Creating Places, Designing Places, Designing Streets and Planning Advice Note 77.

PRIMARY POLICIES:

POLICY 2—DESIGN

Character & Identity

- The design is in context with the surrounding building heights, settlement pattern and character of Stromness.
- There are no existing landscape or topographical features on the site but the design is orientated to provide frontage onto Cairston Road whilst also providing adequate offsets from neighbouring houses.
- The scale and density of the proposed development is in keeping with the settlement pattern of the surrounding neighbourhood.
- · Is appropriately connected to pedestrian, vehicular and public transport routes encouraging and prioritising pedestrian access.
- The proposed boundary treatments are in keeping with the surrounding area and comprise of a mixture of low level natural stone walls and hedging.

Landscaping

- The site layout provides pockets of landscaping to enhance the streetscape and provides attractive area of amenity space to the south with an opportunity to incorporate a filter trench for surface water run off.
- A range of native planting (including trees, shrubs and hedgerows) are proposed to further enhance the existing landscape and to encourage biodiversity in the area.

Parking

• The visual impact of the parking is minimised by locating all parking to the side or rear of houses and screening parking areas with robust planting.

POLICY 5—HOUSING

The Policy 5—Housing document states:

The Plan aims to ensure there are sufficient options and opportunities for the development of new houses of a variety of types and tenures throughout Orkney in order to support existing communities and to allow them to grow in a sustainable manner. It is also important that enough strategic land is allocated to enable growth within settlements to ensure there is housing provision to support potential demand from emerging industries such as renewables.

- The development is for residential housing and the density is in accordance with policy.
- The design is high quality and is consistent with adjacent development sites and existing neighbouring houses.
- The house types have been fully considered and respond to local demand for 2 and 3 bedroom properties in the Stromness area.

Policy 9G—Landscape

designated; or

- infrastructure.

62

ORKNEY BUILDERS (CONTRACTORS) LTD

POLICY 9—NATURAL HERITAGE & LANDSCAPE

Development that affects the National Scenic Area (NSA) will only be permitted where it is demonstrated that: a) the proposal will not have a significant effect on the overall integrity of the area or the qualities for which it has been

b) any such adverse effects are clearly outweighed by social, environmental or economic benefits of national importance.

• The development proposals which are located within the National Scenic area of Hoy & West Mainland will not detract from the quality of the landscape.

• The development proposals are well designed and incorporate a range of high quality materials whilst also being sympathetic to the surrounding landscape.

• Opportunities to enhance biodiversity in the area have been added through the addition of amenity space to the south of the development which also incorporates green/blue

SUSTAINABLE DESIGN

HIGH QUALITY HOUSING

SHORTER PERIOD

ON SITE

The operation of a heat pump is similar to a refrigerator - but

in reverse. This process is known as the vapour comp cycle and the following is a more detailed explanation.

with these.

Energy and sustainability

strategy focusing on 'Fabric

First' and 'low tech' energy

options

The first principal to meet these targets is 'fabric first'. The houses will be highly insulated with close attention to detailing to avoid cold bridging and minimise the energy required to heat them.

Mains gas is not available for this site so some form of electric heating is likely to be the main heating source. Air source heat pump will be considered alongside other options.

A combination of the following other measures will be considered to supplement requirements and further improve performance:

- and improve build quality,
- Solar thermal panels •

- Guide".

Bracewell Stirling CONSULTING

ORKNEY BUILDERS (CONTRACTORS) LTD

CARBON EMISSIONS – DOMESTIC USE

The new Building Standards Section 6 and Section 7 implements the requirements of the Sullivan report and the proposals are fully compliant

Use of large panel timber frame construction to minimise air leakage

Optimising the orientation of dwellings to maximise passive solar gain.

Specification of materials with a high recycled content.

Specification of construction with a high rating in the "Green Design

Friday, 09 December 2022

Local Planner Development Management, Development and Infrastructure Orkney Islands Council Kirkwall KW15 1NY Development Operations The Bridge Buchanan Gate Business Park Cumbernauld Road Stepps Glasgow G33 6FB

Development Operations Freephone Number - 0800 3890379 E-Mail - <u>DevelopmentOperations@scottishwater.co.uk</u> www.scottishwater.co.uk

Dear Customer,

Cairston Road (Land Near), Stromness, KW16 3JS Planning Ref: 22/382/PP Our Ref: DSCAS-0077180-P5Q Proposal: Erect 10 houses with air source heat pumps, construct a road and associated landscaping and infrastructure

Please quote our reference in all future correspondence

Audit of Proposal

Scottish Water has no objection to this planning application; however, the applicant should be aware that this does not confirm that the proposed development can currently be serviced. Please read the following carefully as there may be further action required. Scottish Water would advise the following:

Water Capacity Assessment

Scottish Water has carried out a Capacity review and we can confirm the following:

There is currently sufficient capacity in the Boardhouse Water Treatment Works to service your development. However, please note that further investigations may be required to be carried out once a formal application has been submitted to us.

Waste Water Capacity Assessment

There is currently sufficient capacity for a foul only connection in the Bu Point Waste Water Treatment works to service your development. However, please note that further investigations may be required to be carried out once a formal application has been submitted to us.

Please Note

The applicant should be aware that we are unable to reserve capacity at our water and/or waste water treatment works for their proposed development. Once a formal connection application is submitted to Scottish Water after full planning permission has been granted, we will review the availability of capacity at that time and advise the applicant accordingly.

Asset Impact Assessment

Scottish Water records indicate that there is live infrastructure in the proximity of your development area that may impact on existing Scottish Water assets.

The applicant must identify any potential conflicts with Scottish Water assets and contact our Asset Impact Team via <u>our Customer Portal</u> for an appraisal of the proposals.

The applicant should be aware that any conflict with assets identified will be subject to restrictions on proximity of construction. Please note the disclaimer at the end of this response.

Written permission must be obtained before any works are started within the area of our apparatus

Surface Water

For reasons of sustainability and to protect our customers from potential future sewer flooding, Scottish Water will not accept any surface water connections into our combined sewer system.

There may be limited exceptional circumstances where we would allow such a connection for brownfield sites only, however this will require significant justification from the customer taking account of various factors including legal, physical, and technical challenges.

In order to avoid costs and delays where a surface water discharge to our combined sewer system is anticipated, the developer should contact Scottish Water at the earliest opportunity with strong evidence to support the intended drainage plan prior to making a connection request. We will assess this evidence in a robust manner and provide a decision that reflects the best option from environmental and customer perspectives.

General notes:

- Scottish Water asset plans can be obtained from our appointed asset plan providers:
 - Site Investigation Services (UK) Ltd
 - Tel: 0333 123 1223
 - Email: sw@sisplan.co.uk
 - www.sisplan.co.uk
- Scottish Water's current minimum level of service for water pressure is 1.0 bar or 10m head at the customer's boundary internal outlet. Any property which cannot be adequately serviced from the available pressure may require private pumping arrangements to be installed, subject to compliance with Water Byelaws. If the developer wishes to enquire about Scottish Water's procedure for checking the water pressure in the area, then they should write to the Customer Connections department at the above address.
- If the connection to the public sewer and/or water main requires to be laid through land out-with public ownership, the developer must provide evidence of formal approval from the affected landowner(s) by way of a deed of servitude.
- Scottish Water may only vest new water or waste water infrastructure which is to be laid through land out with public ownership where a Deed of Servitude has been obtained in our favour by the developer.
- The developer should also be aware that Scottish Water requires land title to the area of land where a pumping station and/or SUDS proposed to vest in Scottish Water is constructed.
- Please find information on how to submit application to Scottish Water at <u>our</u> <u>Customer Portal</u>.

Next Steps:

All Proposed Developments

All proposed developments require to submit a Pre-Development Enquiry (PDE) Form to be submitted directly to Scottish Water via <u>our Customer Portal</u> prior to any formal Technical Application being submitted. This will allow us to fully appraise the proposals.

Where it is confirmed through the PDE process that mitigation works are necessary to support a development, the cost of these works is to be met by the developer, which Scottish Water can contribute towards through Reasonable Cost Contribution regulations.

Non Domestic/Commercial Property:

Since the introduction of the Water Services (Scotland) Act 2005 in April 2008 the water industry in Scotland has opened to market competition for non-domestic customers. All Non-domestic Household customers now require a Licensed Provider to act on their behalf for new water and waste water connections. Further details can be obtained at www.scotlandontap.gov.uk

Trade Effluent Discharge from Non-Domestic Property:

Certain discharges from non-domestic premises may constitute a trade effluent in terms of the Sewerage (Scotland) Act 1968. Trade effluent arises from activities including; manufacturing, production and engineering; vehicle, plant and equipment washing, waste and leachate management. It covers both large and small premises, including activities such as car washing and launderettes. Activities not covered include hotels, caravan sites or restaurants.

- If you are in any doubt as to whether the discharge from your premises is likely to be trade effluent, please contact us on 0800 778 0778 or email TEQ@scottishwater.co.uk using the subject "Is this Trade Effluent?".
 Discharges that are deemed to be trade effluent need to apply separately for permission to discharge to the sewerage system. The forms and application guidance notes can be found <u>here</u>.
- Trade effluent must never be discharged into surface water drainage systems as these are solely for draining rainfall run off.
- For food services establishments, Scottish Water recommends a suitably sized grease trap is fitted within the food preparation areas, so the development complies with Standard 3.7 a) of the Building Standards Technical Handbook and for best management and housekeeping practices to be followed which prevent food waste, fat oil and grease from being disposed into sinks and drains.
- The Waste (Scotland) Regulations which require all non-rural food businesses, producing more than 50kg of food waste per week, to segregate waste disposal units that dispose of food waste to the public sewer. Further information can be found at <u>www.resourceefficientscotland.com</u>

I trust the above is acceptable however if you require any further information regarding this matter please contact me on **0800 389 0379** or via the e-mail address below or at <u>planningconsultations@scottishwater.co.uk</u>.

Yours sincerely,

Angela Allison

Development Services Analyst <u>PlanningConsultations@scottishwater.co.uk</u>

Scottish Water Disclaimer:

"It is important to note that the information on any such plan provided on Scottish Water's infrastructure, is for indicative purposes only and its accuracy cannot be relied upon. When the exact location and the nature of the infrastructure on the plan is a material requirement then you should undertake an appropriate site investigation to confirm its actual position in the ground and to determine if it is suitable for its intended purpose. By using the plan you agree that Scottish Water will not be liable for any loss, damage or costs caused by relying upon it or from carrying out any such site investigation."

From: Sam Walker <Sam.Walker@orkney.gov.uk>
Sent: 09 December 2022 16:08
To: planningconsultation <planningconsultation@orkney.gov.uk>
Subject: Re: 22/382/PP

Classification: OFFICIAL

22/382/PP Erect 10 houses with air source heat pumps, construct a road and associated landscaping and infrastructure Cairston Road (Land Near), Stromness KW16 3JS

Having considered the information provided by the applicant Environmental Health recommend the following condition be applied:

Total noise from each of the Air Source Heat Pumps installed shall not exceed NR25 within any residential property outwith the development, where NR25 is the Noise Rating Curve at 25, (noise measurements to be made with a window of any residential property outwith the development open no more than 50 mm).

Reason: to protect any nearby residents from excessive noise disturbance from the air source heat pumps.

Regards

Sam Walker Environmental Health Officer Environmental Health | Planning and Community Protection Neighbourhood Services and Infrastructure Orkney Islands Council School Place KIRKWALL KW15 1NY

Tel: 01856 873535 ext 2802

PHASE:	PHASE: 0							
MH No.	MANHOLE DIAMETER (mm)	MANHOLE TYPE	COVER LEVEL (m)	INVERT LEVEL (m)	DEPTH TO SOFFIT (m)	EASTING (m)	NORTHING (m)	
S1	1200	Туре В	12.687	11.370	1.167	326009.304	1010053.482	
S2	1200	Туре В	12.527	11.005	1.297	326031.572	1010042.108	
S3	1200	Туре В	10.041	8.555	1.261	326013.912	1010006.776	
S4	1200	Туре В	9.774	8.052	1.422	326015.066	1009998.160	
S5	1200	Туре В	8.725	6.814	1.612	325994.416	1009984.815	
S6	1200	Туре В	8.603	6.746	1.557	325984.621	1009987.114	
S7	1200	Туре В	8.009	6.659	1.050	325978.709	1009975.393	
S8		HEADWALL	8.000	6.547	1.153	325972.096	1009959.918	
S9	1200	Туре В	9.476	8.280	1.046	326022.933	1009986.116	
Ex.9913	1200	Туре В	7.513	6.100	1.263	325982.587	1009968.975	
F1	1200	Туре В	12.735	10.970	1.615	326011.376	1010054.143	
F2	1200	Туре В	12.670	10.551	1.969	326033.731	1010042.638	
F3	1200	Туре В	10.092	8.220	1.722	326015.745	1010006.265	
F4	1200	Туре В	9.764	7.700	1.914	326017.286	1009997.596	
F5	1200	Туре В	8.584	6.410	2.024	325993.604	1009982.938	

PHASE	: 0 (PRIVATE	E)					
MH No.	MANHOLE DIAMETER (mm)	MANHOLE TYPE	COVER LEVEL (m)	INVERT LEVEL (m)	DEPTH TO SOFFIT (m)	EASTING (m)	NORTHING (m)
PS1	450	450 Inspection	9.866	8.816	0.900	326023.655	1009997.576
PS2	450	450 Inspection	8.937	7.509	1.278	326000.900	1009985.306
PS3	450	450 Inspection	9.222	7.532	1.540	326001.162	1009991.064
PS4	450	450 Inspection	9.594	7.865	1.579	326006.827	1009994.494
PS5	450	450 Inspection	10.196	9.080	0.966	326011.406	1010010.396
PS6	450	450 Inspection	10.364	9.252	0.962	326012.579	1010012.781
PS7	450	450 Inspection	12.579	11.431	0.998	326017.350	1010039.668
PS8	450	450 Inspection	12.607	11.419	1.038	326012.689	1010041.965
PS9	450	450 Inspection	12.612	11.466	0.996	326009.014	1010043.796
PS10	450	450 Inspection	12.570	11.518	0.902	326004.311	1010046.151
PF1	450	450 Inspection	9.867	8.445	1.273	326023.308	1009998.121
PF2	450	450 Inspection	8.911	7.079	1.683	326000.321	1009984.974
PF3	450	450 Inspection	9.257	6.989	2.119	326001.809	1009991.495
PF4	450	450 Inspection	9.638	7.298	2.189	326007.539	1009994.964
PF5	450	450 Inspection	10.174	9.057	0.967	326011.085	1010009.630
PF6	450	450 Inspection	10.323	8.563	1.610	326012.271	1010012.037
PF7	450	450 Inspection	12.556	11.265	1.141	326018.019	1010039.314
PF8	450	450 Inspection	12.606	11.184	1.272	326013.365	1010041.618
PF9	450	450 Inspection	12.601	11.248	1.203	326009.666	1010043.436
PF10	450	450 Inspection	12.592	11.233	1.209	326004.924	1010045.828

	COVER	Ι	A	11.37m		COVER		А	10.551m
\frown	12.687m	N	В	11.37m	B C	12.670m	Ν	В	10.551m
(S1)	DIAMETER	V	С		⁷⁵⁰⁰ (F2)	DIAMETER	V	С	
1500	1200mm	E	D			1200mm	E	D	
1/20	Туре В	T	E		1200	Туре В	к Т	E	
	COVER		Δ	11.005m	1	COVER		Δ	8 22m
~8 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12.527m	N	B	11.08m	1500	10.092m	N	В	8.22m
⁷⁵⁰ 0 (s2)	DIAMETER	V	С		(F3)	DIAMETER	V	С	_
	1200mm	E	D			1200mm	E	D	
523	Type B	T	E		1500 B	Type B	T	E	
4	COVER		A	8.555m		COVER	Ι	А	7.70m
2554	10.041m	N	В	8.555m	SOR	9.764m	Ν	В	7.70m
(S3)	DIAMETER		С		$(F4) \frac{C}{1500}$	DIAMETER	V	С	7.70m
N	1200mm	R	D		A 1500	1200mm	ER	D	
B 250	Туре В	Т	Е			Туре В	Т	Е	
B	COVER		A	8.202m		COVER	I	A	6.41m
50	9.774m	N	В	8.052m	Bath	8.584m	Ν	В	6.41m
(S4)	DIAMETER	V	С	8.127m	(F5)	DIAMETER	V	С	
BOOT	1200mm		D			1200mm	E R	D	
33 331	Туре В	Т	Е		1.35°	Туре В	Т	Е	
	COVER	I	A	6.814m					
A B	8.725m	N	В	6.814m					
$\frac{7}{3000}$ (S5) 305 -	DIAMETER		С						
	1200mm	R	D						
	Туре В	Т	Е						
	COVER	I	A	6.746m					
\frown	8.603m	N	В	6.746m					
(S6) <u>A</u>	DIAMETER		С						
3000	1200mm	R	D						
100	Туре В	Т	Е						
2/0	COVER	Ι	A	6.659m					
300	8.009m	N	В	6.659m					
(S7)	DIAMETER	F	С						
8800	1200mm	R	D						
30/	Туре В	Т	Е						
4/0	COVER	Ι	Α	6.547m					
30	8.00m		В						
S8	SIZE	E	С						
	x675mm	R	D						
	Unknown	Т	E						
5 P	COVER		A	8.28m					
30	9.476m		В						
(S9)	DIAMETER	E	С						
	1200mm	R	D						
	Туре В	Т	E						
r/m	COVER		A	6.10m					
(15St	7.513m		В						
(Ex.9913)	DIAMETER	E	C						
	1200mm	R							
	Туре В	T .	E						
	COVER		A	10.97m					
	12./35m	V	B	10.97m					
F1 A	DIAMETER	E	C						
8/00 1500	1200mm	R							
,	Type B	ΙŤ	E						

	COVER	I	Α	8.816m		COVER
\frown	9.866m	Ν	В		STA	8.911m
(PS1)	DIAMETER		С		(PF2)	DIAMETEI
4500	450mm	R	D			450mm
	450 Inspection	Т	Е			450 Inspect
	COVER	I	А	7.509m		COVER
ALE	8.937m	Ν	В		\frown	9.257m
(PS2)	DIAMETER		С		(PF3)	DIAMETEI
	450mm	R	D			450mm
	450 Inspection	Т	Е		- Sel	450 Inspect
	COVER	Ι	A	7.532m		COVER
\frown	9.222m	Ν	В		\frown	9.638m
(PS3)	DIAMETER	V	С		(PF4)	DIAMETEI
	450mm	R	D			450mm
- Sel	450 Inspection	Т	Е			450 Inspect
	COVER		A	7.865m		COVER
\frown	9.594m	N	В		\frown	10.174m
(PS4)	DIAMETER	V	С		PF5	DIAMETEI
	450mm	E	D		1500	450mm
33/2	450 Inspection	T	E		-0	450 Inspect
	COVER		Δ	9.080m		COVER
	10.196m	N	B	0.000111		10.323m
(PS5)	DIAMETER	V	C		(PF6)	DIAMETEI
1500	450mm	E	D		1500	450mm
30	450 Inspection	к Т	E		4 0	450 Inspect
	COVER		Δ	9 252m	/	COVER
	10.364m	N	B	3.23211	1500	12.556m
(PS6)	DIAMETER	V	C		(PF7)	DIAMETEI
1500	450mm	E	D			450mm
00	450 Inspection	R T	E			450 Inspect
/	COVER		Α	11 431m	/	COVER
1500	12.579m	N	B	11.10111	1500	12.606m
(PS7)	DIAMETER	V	C C		PF8	DIAMETEI
	450mm	E	D			450mm
	450 Inspection	R T	E			450 Inspect
/	COVER		Δ	11 419m	,	COVER
1500	12.607m	N	В		1500	12.601m
(PS8)	DIAMETER	V	C		(PF9)	DIAMETEI
	450mm	E	D			450mm
	450 Inspection	T	Е			450 Inspect
/	COVER		A	11,466m		COVER
1500	12.612m	N	В		T D	12.592m
(PS9)	DIAMETER	V	C		(PF10)	DIAMETEI
	450mm	E	D			450mm
	450 Inspection	T	Е			450 Inspect
	COVER		Δ	11.518m		
T OO	12.570m	N	B	11.01011		
(PS10)	DIAMETER	V	C			
	450mm	E	D			
	450 Inspection	к Т	E			
	COVER		Δ	8 445m		
	9.867m	Ň	B			
A PF1	DIAMETER	V	C			
1500	450mm	E	D			
	450 Inspection	T	E			
l		<u>'</u>				

69

FIGURED DIMENSIONS ONLY TO BE USED

		A	7.079m
	N V	В	
	Ē	С	
	R	D	
n	Т	Е	
	1	А	6.989m
	N	В	
	v E	С	
	R	D	
n	Т	Е	
	Ι	А	7.298m
	N	В	
	V F	С	
	R	D	
n	Т	Е	
	Ι	А	9.057m
	N	В	
	V F	С	
	R	D	
n	Т	Е	
	Ι	А	8.563m
	N	В	
	V	С	
	R	D	
n	Т	Е	
		А	11.265m
	N	В	
	V F	С	
	R	D	
n	Т	Е	
		А	11.184m
	N	В	
	V	С	
	R	D	
n	Т	Е	
		А	11.248m
	Ν	В	
	V	С	
	E R	D	
n	Т	Е	
		А	11.233m
	Ν	В	
	V	С	
	E R	D	
	11		
n	Т	Е	

Issue Revision Ir	Initial	Date

Cameron+Ross

CIVIL + STRUCTURAL ENGINEERING Forbes House | 15 Victoria Street | Aberdeen | AB10 1XB t 01224 642 400 | w cameronross.co.uk Mulberry House | 39-41 Harbour Road | Inverness | IV1 1UF t 01463 570 100 | w cameronross.co.uk

Client:

Orkney Builders

Project:

Housing Development Cairston Road North Stromness

Drawing Title:

Manhole and Drainage Schedules

Status:

Planning

Scale:NTSDate:11/01/23By:JMAChecked:JMAApproved:RAG

Rev.

Dwg. No. 210321-000-CAM-DR-C-480

Cairston Road North (STR-5), Stromness

Proposed development of 10no. Residential houses

Design Statement

Rev.A - 10.01.23

INTRODUCTION

This design statement has been prepared on behalf of Orkney Builders (Contractors) Ltd in support of a planning application for 10 no. Residential houses at Cairston Road, Stromness.

The application site is shown in a red boundary line on the adjacent map, which highlights its location at the north end of main Stromness settlement and its proximity to existing housing developments, Stromness Primary School and Stromness Academy, both located within 5 minutes walking distance of the site.

The site is located in a predominantly residential area within walking distance of Stromness Town Centre. Local amenities include a doctors surgery, dentist, bank, Co-op along with a range of other services.

VIEW OF SITE LOOKING NORTH-EAST ALONG CAIRSTON ROAD

VIEW OF SITE LOOKING SOUTH-WEST ALONG CAIRSTON ROAD

VIEW OF SITE LOOKING NORTH-WEST FROM GARSON DRIVE

Bracewell Stirling CONSULTING

2

POLICY BACKGROUND & CONTEXT

Within the Orkney Islands Local Plan the site is designated for housing development, under land allocation STR-5. The extract on the right is taken from the Orkney Islands Local Plan shows the entirety of the Stromness development plan designations, which highlights the requirement for housing throughout the town.

The proposed site sits to the north of the main Stromness settlement and is adjacent to existing housing, small commercial sites and the new Stromness Academy. There are existing housing settlements to the east of the site and to the south of the A965.

Figure 1 is an extract taken from Page 85 of the Stromness Urban Design Framework and shows the area highlighted as a secondary area for new housing with the site proposed as a new lower density housing development within the Stromness area. As the proposals are in respect of a residential housing development, a design statement is required in accordance with the Urban Design Framework for Stromness.

FIGURE 1 - Extract from Stromness Urban Design Framework

(CONTRACTORS) LTD

SITE CONTEXT

The site is located to the north of Cairston Road and is surrounded on all three sides by existing development which provides a degree of shelter. Land use along Cairston Road includes buildings which vary in mix from residential housing to light industrial buildings and it is considered the proposed residential development will sit well within the existing site context.

The site is well located to encourage access to local facilities by foot. For this reason, pedestrian accessibility will form a major element in the design of the internal road and footpath network which will link directly to the existing provision on Cairston Road. This will afford the development excellent walking accessibility with safe and direct routes to Stromness Primary School, Stromness Academy and other local amenities which are all located within a short walking distance from the site.

The proposed footway links within the development will also provide access to the existing bus stop located on Cairston Road with bus services providing good public transport accessibility from the proposed development to the town centre and surrounding areas.

The majority of the site is currently being utilised as a site compound including material laydown and parking associated with the adjacent residential development works currently being undertaken on the opposite side of the road.

SITE CONSTRAINTS / OPPORTUNITIES

There are a number of constraints and opportunities which have been taken into consideration whilst informing the development proposals, these are as follows:

Constraints:

- The site has a gradual slope from the north east boundary down to the south west.
- Existing combined sewer running north to south through the site will require to be diverted.
- Existing housing to north, east and west of site appropriate offset to be provided.
- Allow for potential future connection through to future development site to north-west of site.

Opportunities:

- Create pleasant and attractive new access gateway into site from Cairston Road.
- Provide development frontage onto Cairston Road consistent with existing site context.
- Retain existing stone wall to edge of Cairston Road.
- The site will benefit from solar gain for much of the day.
- The site is not considered to be at risk of flooding and any development on the site is unlikely to increase flood risk elsewhere.

5

SITE ANALYSIS

The boundary edges of the proposed site address different situations and must therefore respond accordingly.

- Street frontage: The front of the site addresses the street frontage to Cairston Road. It is important for any new development to address the existing street elevation and respond in a sympathetic manner.
- Vehicular and Pedestrian Access: Access into the site is proposed off Cairston Road connecting to the existing network.
- Existing Housing: Existing housing is located close to the edges of the northern and eastern boundary. Issues of overlooking and distance to neighbouring boundaries are to be addressed through the site layout of the proposed.
- Scale & Density: The density of the proposed houses will be similar to the nearby existing developments and will follow a similar development pattern whilst also being sympathetic to adjacent development.
- Boundary Treatment: there is existing low level walling following the edge of the public footpath, the proposal is to retain this to ensure the development proposals are well integrated and consistent with the existing street character.
- Greenspace: Opportunities to introduce amenity space within the application site to ensure the proposals are well integrated into the existing development.
- Public buildings: Close proximity to public buildings, with the public swimming pool to the north west and both primary and secondary schools within 10 minutes walking distance of the site.
- Town centre & services: To the south-west of the site a newly opened Co-op supermarket will provide services for any new housing development off Cairston Road. Further south along Ferry Road the historic core of the town can be accessed within a 15 minute walk or by bus.

ORKNEY BUILDERS

EXISTING PROPERTIES INCLUDE WINDOWS AND ARE LOCATED CLOSE TO SITE BOUNDARY, ADEQUATE OFFSET IS PROVIDED FROM BOUNDARY

> BUILDING FOOTPRINTS TO A SIMILAR SCALE AND DENSITY TO EXISTING HOUSING

> > EXISTING STONE WALL TO EDGE OF CAIRSTON ROAD TO BE RETAINED.

FEATURE GABLE REQUIRED TO ADDRESS CAIRSTON ROAD

PROPOSED SITE ACCESS ROAD

DESIGN RESPONSE

- Existing low level stone walling feature to be retained to create cohesive appearance along the street elevation.
- Bungalows addressing Cairston Road following the form of adjacent properties with a wide frontage and shallow plan with active frontage where topography permits.
- Bungalows also addressing the new access road and entrance into the site.
- Where possible new dwellings positioned in such a way that will not disturb the key views of neighbouring properties.
- A simple palette of materials will be adopted throughout the development following the local vernacular of materials. The house types will include white roughcast to external walls with flat concrete interlocking tiles to roofs.
- A mix of dwellings are proposed to meet the demand of house types in the Stromness area. Two and three bed villas offset from one another to avoid overlooking.
- Adopted access road with gentle kink to reduce speed of car movement. Adoptable roads design will follow guidance from OIC Roads Department
- Bungalows located at the termination of the access road in keeping with the existing street character on Cairston Road.

ORKNEY BUILDERS

EXISTING PROPERTIES INCLUDE WINDOWS AND ARE LOCATED CLOSE TO SITE BOUNDARY, ADEQUATE OFFSET IS PROVIDED FROM BOUNDARY

> BUILDING FOOTPRINTS TO A SIMILAR SCALE AND DENSITY TO EXISTING HOUSING WITH HOUSE TYPES ALSO UTILISED ON ADJACENT DEVELOPMENTS

> > EXISTING LOW LEVEL STONE WALLING TO BE RETAINED — CREATING A COHESIVE APPEARANCE TO THE STREET ELEVATION

FEATURE GABLE INCLUDING WINDOW ONTO CAIRSTON ROAD

ADOPTED ACCESS ROAD WITH TURNING HEAD

ACTIVE TRAVEL LINK

An active travel link has been provided through the proposed development in line with the requirements of land allocation STR -5. Please refer to below text extract from the OIC Settlement Statement - April 2017).

"Development of this allocation should include provision of vehicular access to allocation STR-3"

The proposed road design will allow for potential vehicular and pedestrian connectivity into the future housing allocation to the north-west.

There are also good overall links to the existing footpath connectivity to the south which allow safe and direct routes to schools, the swimming pool and town centre as indicated in the diagram to the right.

EXISTING PEDESTRIAN FOOTPATHS

PROPOSED PEDESTRIAN LINK TO STR-5 (POTENTIAL FOR FUTURE CONNECTION INTO STR-3)

ORKNEY BUILDERS

SITE SECTION

The below site section A-A shows how the proposals will sit within the surrounding site context, including the relationship to the existing neighbouring houses to the north.

The site topography slopes down from north to south with the finished floor level to Plots 7-10 sitting approx. 1.8m lower than the adjacent house 'Lynndene'. This demonstrates the 2 storey houses are to an appropriate scale/ density when considered against the existing topography and development pattern.

Given there is a requirement to provide a future link to the north-west corner of the site into the short term allocation STR-3, the 2 storey terraced house types to Plots 7-10 have been orientated to provide positive frontage onto the street. This will provide an attractive link into the future land allocation and a high quality street-scene is therefore provided between the two developments.

A 26.0m offset is also provided between the neighbouring houses and the build line of Plots 7-10 which takes into consideration privacy requirements to adjacent housing with adequate separation distances provided.

SITE SECTION A-A

ORKNEY BUI DFRS (CONTRACTORS) LTD

HOUSING DENSITY ANALYSIS

The diagram to the right shows the comparison in housing density between the application site and nearby existing developments. It should be noted that the neighbouring development to the south of Cairston Road includes a higher density layout when compared to the proposed development.

The requirements of land allocation STR-5 within the Stromness settlement statement confirms the site has capacity for 5 houses (equivalent to 10 units per hectare). Whilst planning policy considerations are respected, a development with an increased number of units is considered to be more appropriate for this location given the proximity to nearby schools, local businesses and existing amenities with people more likely to consider more sustainable modes of travel. The development proposals acknowledge this by including a mix of varying housing typologies which also looks to address demand for lower cost housing in comparison to larger, more expensive houses.

Whilst housing densities are a useful way of determining the impact of a development on neighbouring areas, they only really consider one factor when considering the layout. In terms of scale and proportion of the individual house types, consideration should also be given to the comparisons in plot coverage between various house types (for e.g. a single bungalow unit is to a similar footprint when compared to a terraced block of 4 units - please refer to below visuals for direct comparison).

The development footprints are also to a similar scale and size to existing neighbouring properties. The scale and density of the proposed development is therefore considered appropriate within the context of the site with consideration also given to the existing site topography and landscape setting.

*NOTE - Approx. density' shown on plan (units per hectare).

TERRACED UNIT OF 4

SINGLE BUNGALOW

HOUSING TYPOLOGY COMPARISON

Bracewell Stirling CONSULTING

STREETSCENE / 3D VISUALS

VIEW LOOKING NORTH-EAST ALONG CAIRSTON ROAD

VIEW LOOKING WEST ALONG CAIRSTON ROAD

VIEW OF TERRACED BLOCK LOOKING SOUTH-WEST

VIEW LOOKING NORTH-WEST FROM GARSON DRIVE

ORKNEY BUILDERS (CONTRACTORS) LTD

COMPLIANCE WITH POLICY

Within the Orkney Islands Local Development Plan, the following criteria and key design principles have been followed which demonstrate why the chosen development proposals is suitable for the application site.

Consideration has also been given to the relevant national policy and guidance documents, including Creating Places, Designing Places, Designing Streets and Planning Advice Note 77.

PRIMARY POLICIES:

POLICY 2—DESIGN

Character & Identity

- The design is in context with the surrounding building heights, settlement pattern and character of Stromness.
- There are no existing landscape or topographical features on the site but the design is orientated to provide frontage onto Cairston Road whilst also providing adequate offsets from neighbouring houses.
- The scale and density of the proposed development is in keeping with the settlement pattern of the surrounding neighbourhood.
- · Is appropriately connected to pedestrian, vehicular and public transport routes encouraging and prioritising pedestrian access.
- The proposed boundary treatments are in keeping with the surrounding area and comprise of a mixture of low level natural stone walls and hedging.

Landscaping

- The site layout provides pockets of landscaping to enhance the streetscape and provides attractive area of amenity space to the south with an opportunity to incorporate a filter trench for surface water run off.
- A range of native planting (including trees, shrubs and hedgerows) are proposed to further enhance the existing landscape and to encourage biodiversity in the area.

Parking

• The visual impact of the parking is minimised by locating all parking to the side or rear of houses and screening parking areas with robust planting.

POLICY 5—HOUSING

The Policy 5—Housing document states:

The Plan aims to ensure there are sufficient options and opportunities for the development of new houses of a variety of types and tenures throughout Orkney in order to support existing communities and to allow them to grow in a sustainable manner. It is also important that enough strategic land is allocated to enable growth within settlements to ensure there is housing provision to support potential demand from emerging industries such as renewables.

- The development is for residential housing and the density is in accordance with policy.
- The design is high quality and is consistent with adjacent development sites and existing neighbouring houses.
- The house types have been fully considered and respond to local demand for 2 and 3 bedroom properties in the Stromness area.

Policy 9G—Landscape

designated; or

- infrastructure.

ORKNEY BUILDERS (CONTRACTORS) LTD

POLICY 9—NATURAL HERITAGE & LANDSCAPE

Development that affects the National Scenic Area (NSA) will only be permitted where it is demonstrated that: a) the proposal will not have a significant effect on the overall integrity of the area or the qualities for which it has been

b) any such adverse effects are clearly outweighed by social, environmental or economic benefits of national importance.

• The development proposals which are located within the National Scenic area of Hoy & West Mainland will not detract from the quality of the landscape.

• The development proposals are well designed and incorporate a range of high quality materials whilst also being sympathetic to the surrounding landscape.

• Opportunities to enhance biodiversity in the area have been added through the addition of amenity space to the south of the development which also incorporates green/blue

SUSTAINABLE DESIGN

HIGH QUALITY HOUSING

SHORTER PERIOD

ON SITE

The operation of a heat pump is similar to a refrigerator - but

in reverse. This process is known as the vapour comp cycle and the following is a more detailed explanation.

with these.

Energy and sustainability

strategy focusing on 'Fabric

First' and 'low tech' energy

options

The first principal to meet these targets is 'fabric first'. The houses will be highly insulated with close attention to detailing to avoid cold bridging and minimise the energy required to heat them.

Mains gas is not available for this site so some form of electric heating is likely to be the main heating source. Air source heat pump will be considered alongside other options.

A combination of the following other measures will be considered to supplement requirements and further improve performance:

- ٠ and improve build quality,
- Solar thermal panels •

- Guide".

Bracewell Stirling CONSULTING

ORKNEY BUILDERS (CONTRACTORS) LTD

CARBON EMISSIONS – DOMESTIC USE

The new Building Standards Section 6 and Section 7 implements the requirements of the Sullivan report and the proposals are fully compliant

Use of large panel timber frame construction to minimise air leakage

Optimising the orientation of dwellings to maximise passive solar gain.

Specification of materials with a high recycled content.

Specification of construction with a high rating in the "Green Design

INTERNAL MEMORANDUM TO: Development & Marine Planning - Policy Advice

Date of Consultation	30th May 2023
Response required by	20th June 2023
Planning Authority Reference	22/382/PP
Nature of Proposal	Erect 10 houses with air source heat pumps, construct
(Description)	a road and associated landscaping and infrastructure
Site	Cairston Road (Land Near),
	Stromness,
	Orkney,
	KW16 3JS
Proposal Location Easting	326018
Proposal Location Northing	1010016
Area of application site	4962
(Metres)	
Supporting Documentation	http://planningandwarrant.orkney.gov.uk/online-
URL	applications/
	Please enter - 22/382/PP
PA Office	Development Management
Case Officer	Mr Jamie Macvie
Case Officer Phone number	01856 873535 EXT 2529
Case Officer email address	jamie.macvie@orkney.gov.uk
PA Response To	planningconsultation@orkney.gov.uk
•	

Comments:

Development and Marine Planning previously assisted with pre-application advice (dated 25th November 2022), which is referred to within the following comments.

- 1. As noted in the pre-application discussions, the massing and heights of plots 7-10 remain a dominant feature of the proposals and are not in-keeping with their immediate surroundings, which are predominately single storey with some 1.5 storey. The Design Statement (pg. 10) notes the plot coverage similarities between a single bungalow and a terrace of 4, however, this planbased assessment fails to address the impact that heights have on neighbouring properties and the proposals relationship to its wider context. The use of 2-storeys on the highest parts of the development is therefore not deemed appropriate. Building heights should reflect the typographic sensitivities of the site, with lower storey units on higher ground to minimise landscape impacts from both within and outwith the site boundary, with special attention paid due to the site's location within the Hoy and West Mainland National Scenic Area. To address this, consideration should be given to potential reconfiguration of the site to locate the 2-storey units within the lower parts of the site, or opportunities to reduce the height of plots 7-10 to 1.5 storeys, utilising bedrooms within the eaves to balance unit sizes with external building heights.
- 2. As noted in pre-application discussions, Plot One should have a principle/form of active frontage facing onto Cairston Road. The current proposed gable is predominately blank with one small window. In its current form this does not provide sufficient active frontage onto the existing street. It is noted in correspondence to pre-application advice (dated 11.1.23) that reorientation of the building could result in level issues, however in this instance internal reorganisation of the unit could provide the opportunity to include additional and/or larger windows to the gable end, encouraging passive surveillance whilst positively addressing the existing street.
- Inclusion of a 2m wide footway through the development to facilitate a future link with STR-3 is welcomed.
- 4. Inclusion of additional planting/landscape within the parking area to the north of the site is also welcomed.

REV DATE DESCRIPTION DRN Bracewell Stirling CONSULTING 38 WALKER TERRACE, TILLICOULTRY, FK13 6EF 01259 750301 5 NESS BANK, INVERNESS, IV2 4SF 01463 233760 15 LOCHSIDE STREET, OBAN, PA34 4HP 01631 359054 PROPOSED HOUSING DEVELOPMENT CAIRSTON ROAD NORTH, STROMNESS ORKNEY BUILDERS LTD Ν LOCATION PLAN PLANNING STATUS: SCALE: 1 : 1250 DRAWN: 1 : 1250 0 ---Nov 2022 25m PAPER SIZE: A3 DATE: 75m DWG No. REV. А 4765-01-001

Planning Authority Name	Orkney Islands Council
Date of Consultation	30th May 2023
Response required by	20th June 2023
Planning Authority Reference	22/382/PP
Nature of Proposal	Erect 10 houses with air source heat pumps,
(Description)	construct a road and associated landscaping and
	infrastructure
Site	Cairston Road (Land Near),
	Stromness,
	Orkney,
	KW16 3JS
Site Postcode	N/A
Site Gazetteer UPRN	
Proposal Location Easting	326018
Proposal Location Northing	1010016
Area of application site	4962
(Metres)	
Clarification of Specific	
Reasons for Consultation	
Development Hierarchy Level	N/A
Supporting Documentation	http://planningandwarrant.orkney.gov.uk/online-
URL	applications/
List of Assailable Osma antis s	Please enter - 22/382/PP
List of Available Supporting	AS above URL
Offline Documents available?	N/A Oard Nevember 2022
Date of validation by Planning	23rd November 2022
Authonity	
Governing Legislation	DEVELOPMENT MANAGEMENT PROCEDURE
	(SCOTLAND) REGULATIONS 2013
Consultation Type	Planning Permission
Consultation Stage	N/A
Is this a re-consultation of an	YES
existing application?	
EIA Required	No
EIA Regulations	N/A
Use Class (Current)	
Use Class (Proposed)	
Does the application conform	
with the Structure Plan / Local	
Plan Land Use	
Additional Comments relating	N/A
to Structure Plan / Local Plan	
Use	
Transport Assessment or	N/A
Travel Plan	
Applicant Name	Orkney Builders Ltd
Applicant Organisation Name	
Applicant Address	Orkney Builders Ltd
	Hatston Road
1	Crowness

	Kirkwall Orkney KW15 1RG
Agent Name	Bracewell Stirling
Agent Organisation Name	
Agent Address	C/o Lisa Balnave 5 Ness Bank Inverness United Kingdom IV2 4SF
Agent Phone Number	N/A
Agent Email Address	N/A
PA Office	Development Management
Case Officer	Mr Jamie Macvie
Case Officer Phone number	01856 873535 EXT 2529
Case Officer email address	jamie.macvie@orkney.gov.uk
PA Response To	planningconsultation@orkney.gov.uk

As indicated in the pre-application advise for this development the formation of a crossroads is not an ideal, it is however accepted that given the geometry of the existing road and the position and proximity to existing junctions and accesses there no ideal location to site a new access. Therefore, the access location as proposed would be acceptable in this instance, however the short sections of footway indicated at either side of the junction must be extended and pedestrian crossing points formed as part of the development.

With regard to the proposed drainage for the site the comments noted below must all be suitably addressed prior to any planning permission being granted.

- The proposed access to the SuDS area is via an unadopted section of road / access which is unacceptable. Access should be provided directly from an adoptable section of road, with turning facilities also being provided to enable the largest expected maintenance vehicle to access and egress the area in a forward direction.
- When assessed using the Simple Index Approach from The SuDS Manual 2015, the water quality treatment provided by the proposed filter drain is not adequate. In addition, the implications of using filter drains without prior removal of course sediment must be taken into consideration in system design and the Maintenance Plan (settled sediments could be washed out of the sumps of the gullies proposed during periods of turbulent high runoff flow). A system offering adequate water quality treatment should be proposed.
- No explanation of the proposed surface water drainage system or justification for the proposal not to provide flow control has been provided. This development is not comparable to Oakdene with regard to discharges, as suggested, because increases in discharge rates beyond greenfield runoff rate do have potential to contribute to flooding elsewhere.
- Discharges should not exceed the greenfield runoff in terms of volume or rate up to the 1in200 year + climate change rainfall event. This is most easily achieved by restricting maximum discharge rates so that they do not exceed the 1in2 year greenfield runoff rate. Discharge rates proposed exceed this for all return periods for which calculations have been provided.
- A maintenance plan detailing maintenance responsibilities, arrangements and operational procedures must be provided. This must set out the inspection regime and describe all planned maintenance up to and including the periodic excavation and replacement of all filter media.
- No description or details of proposed construction phase SuDS has been provided.

• The design information provided appears to consider only impermeable areas and does not take into account runoff originating within the development or running into the development from the land uphill.

D.W.

Cameron & R	OSS							Page 1	1
15 Victoria	Street		A/21	L0321 -	- Cairsto	on Road			
Aberdeen			Nort	ch - Fi	ilter Tre	ench Cal	С	4	
AB10 1XB								Micco	Cm
Date 09/08/	2022		Desi	lgned k	oy JMA				
File			Chec	cked by	7			Urair	lage
CADS			Sour	ce Cor	ntrol 201	7.1.2		N	
	Summary c	of Results	for 20	00 yea:	r Return	Period	(+35%)	
		Half	Drain T	ime : 4	minutes.				
	Storm	Max Max	: M	ax	Max	Max	Max	Status	
	Event	Level Dept	h Infilt	ration	Control Σ	Outflow	Volume		
		(m) (m)	(1	/s)	(1/s)	(1/s)	(m³)		
15	min Summer	7.324 0.82	4	0.0	43.8	43.8	12.1	ОК	
30	min Summer	7.381 0.88	1	0.0	50.0	50.0	13.0	0 K	
60	min Summer	7.374 0.87	4	0.0	49.3	49.3	12.9	ΟK	
120	min Summer	7.291 0.79	1	0.0	39.7	39.7	11.6	ΟK	
180	min Summer	7.247 0.74	7	0.0	32.9	32.9	11.0	ΟK	
240	min Summer	7.223 0.72	:3	0.0	28.1	28.1	10.6	ОК	
360	min Summer	7.193 0.69	13	0.0	22.1	22.1	10.2	ОК	
480	min Summer	7.173 0.67	3	0.0	18.5	18.5	9.9	ОК	
600	min Summer	7.156 0.65	06	0.0	16.1	16.1	9.6	OK	
720	min Summer	7 128 0 62	:3	0.0	14.2 11 9	14.2	9.4	OK	
1440	min Summer	7 112 0 61	.0 2	0.0	11.0	11.0 8 8	9.2	0 K	
2160	min Summer	7.099 0.59	19	0.0	6.6	6.6	8.8	0 K	
2880	min Summer	7.088 0.58	8	0.0	5.5	5.5	8.6	0 K	
4320	min Summer	7.076 0.57	6	0.0	4.1	4.1	8.4	ОК	
5760	min Summer	7.069 0.56	9	0.0	3.4	3.4	8.3	ОК	
7200	min Summer	7.063 0.56	3	0.0	2.9	2.9	8.2	ОК	
8640	min Summer	7.059 0.55	9	0.0	2.5	2.5	8.2	ΟK	
10080	min Summer	7.056 0.55	6	0.0	2.3	2.3	8.1	ОК	
15	min Winter	7.370 0.87	0	0.0	48.9	48.9	12.8	ОК	
		Storm	Rain	Floode	d Discharg	ge Time-P	eak		
	:	Event	(mm/hr)	Volume	e Volume	(mins	5)		
				(m³)	(m³)				
	15	min Summer	83.965	0.	0 28.	. 0	16		
	30	min Summer	59.880	0.	0 43.	. 0	23		
	60	min Summer	40.721	0.	0 61.	.1	38		
	120	min Summer	26.227	0.	0 80.	. 8	68		
	180	min Summer	20.088	0.	U 94.	. U	98		
	240	min Summer	10.566	υ.	u 104.	. U	128		
	360	min Summer	10 224	υ.	U 119. 0 101	. J	778 778		
	400	mini Summer	10.324	υ.	·	. J	240		

080 15	min min	Summer Winter	1.219 83.965		0.0	336.8 32.2	5128 16
		©198	32-2017	XP	Solu	tions	

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

141.4

150.0

164.4

186.7

211.9

231.7

262.2

285.7

305.2

322.0

308

368

486

734

1080

1460

2136

2848

3552

4272

600 min Summer

720 min Summer

960 min Summer

1440 min Summer

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

8.850

6.386

4.811

3.624

2.964

2.228

1.817

1.550

1.361

7.800

Cameron & Ross		Page 2
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L.
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 200 year Return Period (+35%)

	Storm	n	Max	Max	Max	Max		Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ	Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)		(1/s)	(m³)	
30	min 1	Winter	7.417	0.917	0.0	53.5		53.5	13.5	ОК
60	min M	Winter	7.350	0.850	0.0	46.7		46.7	12.5	ОК
120	min M	Winter	7.249	0.749	0.0	33.3		33.3	11.0	ОК
180	min M	Winter	7.213	0.713	0.0	26.0		26.0	10.5	ОК
240	min M	Winter	7.190	0.690	0.0	21.6		21.6	10.1	ОК
360	min M	Winter	7.160	0.660	0.0	16.6		16.6	9.7	ОК
480	min 1	Winter	7.139	0.639	0.0	13.6		13.6	9.4	ОК
600	min 1	Winter	7.128	0.628	0.0	11.8		11.8	9.2	ОК
720	min 1	Winter	7.120	0.620	0.0	10.3		10.3	9.1	ОК
960	min 1	Winter	7.111	0.611	0.0	8.5		8.5	8.9	ОК
1440	min 1	Winter	7.096	0.596	0.0	6.4		6.4	8.7	ΟK
2160	min 1	Winter	7.082	0.582	0.0	4.8		4.8	8.5	ОК
2880	min 1	Winter	7.075	0.575	0.0	4.0		4.0	8.4	ОК
4320	min 1	Winter	7.065	0.565	0.0	3.0		3.0	8.2	ОК
5760	min 1	Winter	7.058	0.558	0.0	2.4		2.4	8.1	ОК
7200	min 1	Winter	7.053	0.553	0.0	2.1		2.1	8.1	ОК
8640	min 1	Winter	7.050	0.550	0.0	1.8		1.8	8.0	ΟK
10080	min 1	Winter	7.048	0.548	0.0	1.6		1.6	8.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	59 880	0 0	19 0	23
60	min	Winter	40 721	0.0	49.0	20
120	min	Winter	26 227	0.0	91 A	68
180	min	Winter	20.227	0.0	106 1	96
240	min	Winter	16 566	0.0	117 /	128
360	min	Winter	12 577	0.0	13/ 7	196
180	min	Winter	10 324	0.0	1/9 1	246
400 600	min	Winter	9 950	0.0	150.2	240
720	min	Winter	7 800	0.0	169.9	364
960	min	Winter	6 396	0.0	195.0	100
1440	min	Winter	1 011	0.0	210 0	400
2160	min	Winter	4.011 2.624	0.0	210.0	1002
2160	ш±п ,	winter	3.024	0.0	238.2	1092
2880	min	Winter	2.964	0.0	260.4	1472
4320	min	Winter	2.228	0.0	294.5	2172
5760	min	Winter	1.817	0.0	320.9	2864
7200	min	Winter	1.550	0.0	342.7	3648
8640	min	Winter	1.361	0.0	361.5	4368
10080	min	Winter	1.219	0.0	378.1	4992

Cameron & Ross		Page 3
15 Victoria Street	A/210321 - Cairston Road	5
Aberdeen	North - Filter Trench Calc	4
AB10 1XB		Mirro
Date 09/08/2022	Designed by JMA	Nrainage
File	Checked by	Diamage
CADS	Source Control 2017.1.2	
Ra	ainfall Details	
Rainfall Model Return Period (years) Region Scotl M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms 200 Cv (Summer) 0 and and Ireland Cv (Winter) 0 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 1 Ves Climate Change %	Yes .750 .840 15 0080 +35
Ti	ime Area Diagram	135
Tot	tal Area (ha) 0.224	
Time (mins) Area T From: To: (ha) F	Fime (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)	
0 4 0.074	4 8 0.075 8 12 0.075	
©1982	2-2017 XP Solutions	

Cameron & Ross		Page 4
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.500

Filter Drain Structure

Infiltration	Coefficient	Base	(m/hr	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient	Side	(m/hr	0.00000	Pipe	Depth above Invert (m)	0.000
	Sa	afety	Facto	2.0		Slope (1:X)	150.0
		Pc	prosit	2 0.30		Cap Volume Depth (m)	0.000
	Inve	t Lev	vel (m	6.500	Cap	Infiltration Depth (m)	0.000
	Trend	ch Wic	dth (m	5.0		Number of Pipes	1
	Trench	1 Leng	gth (m	10.0			

Pipe Outflow Control

Diameter (m)	0.225	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	13.500	Upstream Invert Level (m)	7.000
Roughness k (mm)	0.600		

Cameron & R	099									Page 1	
	000	1			7 /01	0.0.0.1				rage r	
15 Victoria	Str	eet			A/21	A/210321 - Cairston Road					
Aberdeen						h - Fi	lter Tre	nch Cal	C	12m	
AB10 1XB										Micco	
Date 09/08/	2022				Desi	gned b	y JMA				
File					Chec	ked by	,			Uldille	dYP
CADS					Sour	rce Con	trol 201	7 1 2		-	
					Dour	00 0011	201	7•±•2			
	Sumr	marv c	of Res	111+9	for 10) vear	Return	Period	(+35%))	
	buill	mary c	JI KCS	urts	101 10	JU YCUI		ICIIOU	(1000)	<u>)</u>	
				Half I	Drain T	ime : 5	minutes.				
	Stor	n	Max	Max	Ma	ах	Max	Max	Max	Status	
	Event	t	Level	Depth	Infilt	ration	Control S	Outflow	Volume		
			(m)	(m)	(1	/s)	(1/s)	(l/s)	(m³)		
15	min	Summor	7 278	0 778		0 0	38 1	38 1	11 5	0 K	
30	min	Summer	7 320	0.770		0.0	43 3	43 3	12 1	O K O K	
60	min	Summer	7.314	0.814		0.0	42.7	42.7	12.0	O K	
120	min	Summer	7.254	0.754		0.0	34.4	34.4	11.1	0 K	
180	min	Summer	7.225	0.725		0.0	28.4	28.4	10.6	ОК	
240	min	Summer	7.204	0.704		0.0	24.3	24.3	10.3	ΟK	
360	min	Summer	7.178	0.678		0.0	19.2	19.2	10.0	0 K	
480	min	Summer	7.157	0.657		0.0	16.1	16.1	9.6	O K	
600	min	Summer	7.142	0.642		0.0	14.0	14.0	9.4	0 K	
720	min	Summer	7.132	0.632		0.0	12.5	12.5	9.3	ΟK	
960	min	Summer	7.120	0.620		0.0	10.2	10.2	9.1	ΟK	
1440	min	Summer	7.107	0.607		0.0	7.8	7.8	8.9	ОК	
2160	min	Summer	7.092	0.592		0.0	5.9	5.9	8./	OK	
2880	min	Summer	7.083	0.583		0.0	4.9	4.9	8.J	OK	
4320	min	Summor	7.072	0.572		0.0	3.7	3.7	0.4 8 3	O K O K	
7200	min	Summer	7.060	0.560		0.0	2.6	2.6	8 2	O K O K	
8640	min	Summer	7.056	0.556		0.0	2.3	2.3	8.1	O K	
10080	min	Summer	7.053	0.553		0.0	2.0	2.0	8.1	0 K	
15	min	Winter	7.314	0.814		0.0	42.6	42.6	12.0	ОК	
			Storm		Dain	Flooder	Discharg	o Timo-D	ook		
			Event		(mm/br)	Volumo	Volumo	c IIIIe-P	car a)		
			LVEIIC		()	(m ³)	(m ³)	(1111)	~/		
		15	min Su	mmer	72.673	0.0	23.	2	16		
		30	min Su	mmer	51.518	0.0	36.	0	23		
		60	min Su	mmer	34.923	0.0	51.	4	38		
		120	min Su	ummer	22.569	0.0) 68.	5	68		
		180	min Su	ummer	17.334	0.0	80.	1	98		

				(m³)	(m³)		
15	min	Summer	72.673	0.0	23.2	16	
30	min	Summer	51.518	0.0	36.0	23	
60	min	Summer	34.923	0.0	51.4	38	
120	min	Summer	22.569	0.0	68.5	68	
180	min	Summer	17.334	0.0	80.1	98	
240	min	Summer	14.329	0.0	89.0	128	
360	min	Summer	10.919	0.0	102.8	188	
480	min	Summer	8.989	0.0	113.5	248	
600	min	Summer	7.724	0.0	122.5	308	
720	min	Summer	6.821	0.0	130.2	366	
960	min	Summer	5.602	0.0	143.3	490	
1440	min	Summer	4.241	0.0	163.7	734	
2160	min	Summer	3.209	0.0	186.8	1088	
2880	min	Summer	2.633	0.0	205.0	1464	
4320	min	Summer	1.989	0.0	233.3	2152	
5760	min	Summer	1.628	0.0	255.3	2904	
7200	min	Summer	1.394	0.0	273.7	3664	
8640	min	Summer	1.227	0.0	289.5	4296	
10080	min	Summer	1.101	0.0	303.5	5128	
15	min	Winter	72.673	0.0	26.9	16	
		©198	32-2017	XP Solu	tions		

Cameron & Ross		Page 2
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L.
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+35%)

	Storm	ı	Max	Max	Max	Max	_	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ	Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
30	min V	Winter	7.348	0.848	0.0	46.5		46.5	12.5	ОК
60	min V	Winter	7.295	0.795	0.0	40.3		40.3	11.7	ОК
120	min V	Winter	7.226	0.726	0.0	28.6		28.6	10.7	ОК
180	min V	Winter	7.195	0.695	0.0	22.4		22.4	10.2	ОК
240	min V	Winter	7.174	0.674	0.0	18.7		18.7	9.9	ОК
360	min V	Winter	7.144	0.644	0.0	14.3		14.3	9.4	ОК
480	min V	Winter	7.128	0.628	0.0	11.8		11.8	9.2	ОК
600	min V	Winter	7.120	0.620	0.0	10.2		10.2	9.1	ОК
720	min V	Winter	7.113	0.613	0.0	9.0		9.0	9.0	ОК
960	min V	Winter	7.105	0.605	0.0	7.5		7.5	8.9	ОК
1440	min V	Winter	7.090	0.590	0.0	5.6		5.6	8.6	ОК
2160	min V	Winter	7.077	0.577	0.0	4.2		4.2	8.4	ОК
2880	min V	Winter	7.071	0.571	0.0	3.5		3.5	8.3	ОК
4320	min V	Winter	7.061	0.561	0.0	2.7		2.7	8.2	ОК
5760	min V	Winter	7.055	0.555	0.0	2.2		2.2	8.1	ОК
7200	min V	Winter	7.051	0.551	0.0	1.9		1.9	8.0	ОК
8640	min V	Winter	7.048	0.548	0.0	1.6		1.6	8.0	ОК
10080	min V	Winter	7.045	0.545	0.0	1.5		1.5	8.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	51.518	0.0	41.2	23
60	min	Winter	34.923	0.0	58.4	38
120	min	Winter	22.569	0.0	77.6	68
180	min	Winter	17.334	0.0	90.6	98
240	min	Winter	14.329	0.0	100.6	128
360	min	Winter	10.919	0.0	116.0	188
480	min	Winter	8.989	0.0	128.0	246
600	min	Winter	7.724	0.0	138.1	306
720	min	Winter	6.821	0.0	146.7	370
960	min	Winter	5.602	0.0	161.4	488
1440	min	Winter	4.241	0.0	184.2	736
2160	min	Winter	3.209	0.0	210.1	1072
2880	min	Winter	2.633	0.0	230.5	1432
4320	min	Winter	1.989	0.0	262.2	2200
5760	min	Winter	1.628	0.0	286.9	2840
7200	min	Winter	1.394	0.0	307.4	3640
8640	min	Winter	1.227	0.0	325.1	4352
10080	min	Winter	1.101	0.0	340.8	5072

Cameron & Ross	Page 3
15 Victoria Street	A/210321 - Cairston Road
Aberdeen	North - Filter Trench Calc
NB10 1XB	Micro
Date 09/08/2022	Designed by JMA
File	Checked by
CADS	Source Control 2017.1.2
Ra:	infall Details
Rainfall Model Return Period (years) Region Scotlan M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yes 100 Cv (Summer) 0.750 nd and Ireland Cv (Winter) 0.840 13.000 Shortest Storm (mins) 15 0.250 Longest Storm (mins) 10080 Yes Climate Change % +35
Tim	ne Area Diagram
Tota	al Area (ha) 0.224
Time (mins) Area Ti From: To: (ha) Fro	om: To: (ha) From: To: (ha)
0 4 0.074	4 8 0.075 8 12 0.075
\$1000	2017 VP Solutions

Cameron & Ross		Page 4
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.500

Filter Drain Structure

Infiltration Coefficient Base (m/hr)0.00000Pipe Diameter (m)0.225Infiltration Coefficient Side (m/hr)0.0000Pipe Depth above Invert (m)0.000Safety Factor2.0Slope (1:X)150.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)6.500Cap Infiltration Depth (m)0.000Trench Width (m)5.0Number of Pipes1Trench Length (m)10.010.010.0

Pipe Outflow Control

Diameter (m)	0.225	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	13.500	Upstream Invert Level (m)	7.000
Roughness k (mm)	0.600		

©1982-2017 XP Solutions

Cameron & R	OSS									Page 1
15 Victoria	Str	reet			A/21	.0321 -	• Cairsto	n Road		
Aberdeen					Nort	North - Filter Trench Calc				L'
AB10 1XB										Micco
Date 09/08/	2022				Desi	.gned b	y JMA			
File A21032	1 -	Filter	r Tren	ch	Chec	ked by	7			Uldiiidl
CADS					Sour	ce Con	trol 201	7.1.2		
	Sur	nmarv	of Res	sults	for 3	0 vear	Return	Period	(+35%)	
	<u></u>		01 100			ing a f			(-
				Hali D	rain T	ıme : 5	minutes.			
	Stor	m	Max	Max	Ma	ax	Max	Max	Max	Status
	Even	τ	(m)	Deptn (m)	1n111 (1	ration (e)	(1/e)	(1/e)	(m ³)	
			(111)	(111)	(1)	, 3)	(1/3)	(1/3)	(111)	
15	min	Summer	7.229	0.729		0.0	29.3	29.3	10.7	O K
30	min	Summer	7.251	0.751		0.0	33.7	33.7	11.0	O K
60	min	Summer	7.247	0.747		0.0	33.0	33.0	11.0	O K
120	min	Summer	7.216	0.716		0.0	26.6	26.6	10.5	0 K
180	min	Summer	7.192	0.692		0.0	22.0	22.0	10.2	0 K
240	min	Summer	7.176	0.676		0.0	18.9	18.9	9.9	0 K
360	min	Summer	7.149	0.649		0.0	15.0	15.0	9.5	0 K
480	min	Summer	7.133	0.633		0.0	12.7	12.7	9.3	0 K
600	min	Summer	7.124	0.624		0.0	11.1	11.1	9.1	0 K
720	min	Summer	7.118	0.618		0.0	9.8	9.8	9.0	0 K
960	min	Summer	7.109	0.609		0.0	8.2	8.2	8.9	ОК
1440	min	Summer	7.095	0.595		0.0	6.2	6.2	8.7	ОК
2160	min	Summer	7.082	0.582		0.0	4.8	4.8	8.5	ОК
2880	min	Summer	7.075	0.575		0.0	4.0	4.0	8.4	ОК
4320	mın	Summer	/.065	0.565		0.0	3.0	3.0	8.3	OK
5/60	min	Summer	7.059	0.559		0.0	2.5	2.5	8.2	OK
/200	mın	Summer	7.054	0.554		0.0	2.1	2.1	8.1	OK
8640	min	Summer	7.051	0.551		0.0	1.9	1.9	8.0	OK
10080	min	Winter	7.049	0.549		0.0	1./	33 3	8.0	OK
ŤĴ		WINCEL	1.249	0.745		0.0	55.5	55.5	11.0	0 1
			Storm		Rain	Flooded	d Discharg	e Time-P	eak	
			Event	(1	mm/hr)	Volume (m³)	Volume (m³)	(mins	3)	
		15	min Su	mmer	56.548	0.0	0 16.	5	16	
		30	min Su	mmer	39.673	0.0	26.	С	23	
		60	min Cu	mmor	26 745	0 0	n 27	c	20	

60	min	Summer	26.745	0.0	37.6	38
120	min	Summer	17.385	0.0	51.1	68
180	min	Summer	13.417	0.0	60.3	98
240	min	Summer	11.137	0.0	67.6	128
360	min	Summer	8.542	0.0	78.8	188
480	min	Summer	7.068	0.0	87.7	246
600	min	Summer	6.098	0.0	95.2	306
720	min	Summer	5.403	0.0	101.6	368
960	min	Summer	4.463	0.0	112.7	484
1440	min	Summer	3.406	0.0	130.0	730
2160	min	Summer	2.598	0.0	149.9	1080
2880	min	Summer	2.144	0.0	165.6	1444
4320	min	Summer	1.634	0.0	190.3	2180
5760	min	Summer	1.346	0.0	209.9	2920
7200	min	Summer	1.158	0.0	226.2	3672
8640	min	Summer	1.024	0.0	240.5	4264
10080	min	Summer	0.923	0.0	253.2	5072
15	min	Winter	56.548	0.0	19.3	16
		©198	32-2017	XP Solut:	ions	

Cameron & Ross	Page 2	
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L.
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+35%)

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Ma Σ Out	ax tflow	Max Volume	Statu	s
			(m)	(m)	(1/s)	(1/s)	(1,	/s)	(m³)		
30	min 1	Winter	7.266	0.766	0.0	36.3		36.3	11.3	0	K
60	min 1	Winter	7.238	0.738	0.0	31.1		31.1	10.8	0	K
120	min 1	Winter	7.193	0.693	0.0	22.1		22.1	10.2	0	K
180	min 1	Winter	7.165	0.665	0.0	17.4		17.4	9.8	0	K
240	min 1	Winter	7.145	0.645	0.0	14.5		14.5	9.5	0	K
360	min 1	Winter	7.125	0.625	0.0	11.2		11.2	9.2	0	K
480	min 1	Winter	7.115	0.615	0.0	9.4		9.4	9.0	0	K
600	min N	Winter	7.108	0.608	0.0	8.0		8.0	8.9	0	K
720	min 1	Winter	7.103	0.603	0.0	7.1		7.1	8.8	0	K
960	min 1	Winter	7.092	0.592	0.0	5.9		5.9	8.7	0	K
1440	min 1	Winter	7.080	0.580	0.0	4.5		4.5	8.5	0	K
2160	min 1	Winter	7.070	0.570	0.0	3.5		3.5	8.3	0	K
2880	min M	Winter	7.063	0.563	0.0	2.9		2.9	8.2	0	K
4320	min 1	Winter	7.055	0.555	0.0	2.2		2.2	8.1	0	K
5760	min 1	Winter	7.050	0.550	0.0	1.8		1.8	8.0	0	K
7200	min 1	Winter	7.046	0.546	0.0	1.5		1.5	8.0	0	K
8640	min 1	Winter	7.043	0.543	0.0	1.4		1.4	7.9	0	K
10080	min 1	Winter	7.041	0.541	0.0	1.2		1.2	7.9	0	K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	39.673	0.0	30.0	23
60	min	Winter	26.745	0.0	43.0	38
120	min	Winter	17.385	0.0	58.1	68
180	min	Winter	13.417	0.0	68.5	98
240	min	Winter	11.137	0.0	76.5	128
360	min	Winter	8.542	0.0	89.2	190
480	min	Winter	7.068	0.0	99.1	248
600	min	Winter	6.098	0.0	107.5	308
720	min	Winter	5.403	0.0	114.7	372
960	min	Winter	4.463	0.0	127.1	488
1440	min	Winter	3.406	0.0	146.5	736
2160	min	Winter	2.598	0.0	168.7	1092
2880	min	Winter	2.144	0.0	186.4	1444
4320	min	Winter	1.634	0.0	214.1	2184
5760	min	Winter	1.346	0.0	235.9	2856
7200	min	Winter	1.158	0.0	254.3	3648
8640	min	Winter	1.024	0.0	270.2	4368
10080	min	Winter	0.923	0.0	284.4	5088

Cameron & Ross	Page 3
15 Victoria Street	A/210321 - Cairston Road
Aberdeen	North - Filter Trench Calc
AB10 1XB	Micco
Date 09/08/2022	Designed by JMA
File A210321 - Filter Trench	Checked by
CADS	Source Control 2017.1.2
Ra	ainfall Details
Rainfall Model	FSR Winter Storms Yes
Return Period (years)	30 Cv (Summer) 0.750
Region Scotla	and and Ireland Cv (Winter) 0.840
MO-60 (mm) Ratio R	0 250 Longest Storm (mins) 15
Summer Storms	Yes Climate Change % +35
Tin	me Area Diagram
Tota	al Area (ha) 0.224
Time (mins) Area Ti From: To: (ha) Fr	ime (mins) Area Time (mins) Area com: To: (ha) From: To: (ha)
0 4 0.074	4 8 0.075 8 12 0.075
©1982-	-2017 XP Solutions

Cameron & Ross	Page 4	
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L.
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamacje
CADS	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.500

Filter Drain Structure

Infiltration Coefficient Base (m/hr)0.00000Pipe Diameter (m)0.225Infiltration Coefficient Side (m/hr)0.0000Pipe Depth above Invert (m)0.000Safety Factor2.0Slope (1:X)150.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)6.500Cap Infiltration Depth (m)0.000Trench Width (m)5.0Number of Pipes1Trench Length (m)10.010.010.0

Pipe Outflow Control

Diameter (m)	0.225	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	13.500	Upstream Invert Level (m)	7.000
Roughness k (mm)	0.600		

©1982-2017 XP Solutions

Cameron & Ross		Page 1
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	4
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Digitight
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Half Drain Time : 8 minutes.

	Storm	n	Max	Max Max Max Max Max M		Max	Status		
	Event	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	7 1 4 6	0 616	0 0	1/ 6	14 6	95	0 K
20	min	Cummor	7.171	0.010	0.0	10 1	10 1	0.0	OK
50		Summer	/ • 1 / 1	0.071	0.0	10.1	10.1	9.0	O K
60	min	Summer	/.1/5	0.6/5	0.0	18.8	18.8	9.9	0 K
120	mın	Summer	7.152	0.652	0.0	15.4	15.4	9.5	ΟK
180	min	Summer	7.134	0.634	0.0	12.9	12.9	9.3	ΟK
240	min	Summer	7.124	0.624	0.0	11.1	11.1	9.1	ОК
360	min	Summer	7.113	0.613	0.0	8.9	8.9	9.0	ΟK
480	min	Summer	7.106	0.606	0.0	7.6	7.6	8.9	ОК
600	min	Summer	7.098	0.598	0.0	6.6	6.6	8.8	ΟK
720	min	Summer	7.092	0.592	0.0	5.9	5.9	8.7	ΟK
960	min	Summer	7.083	0.583	0.0	4.9	4.9	8.5	ΟK
1440	min	Summer	7.073	0.573	0.0	3.8	3.8	8.4	ОК
2160	min	Summer	7.064	0.564	0.0	2.9	2.9	8.2	ΟK
2880	min	Summer	7.058	0.558	0.0	2.4	2.4	8.1	ΟK
4320	min	Summer	7.051	0.551	0.0	1.9	1.9	8.0	ΟK
5760	min	Summer	7.046	0.546	0.0	1.5	1.5	8.0	ΟK
7200	min	Summer	7.043	0.543	0.0	1.3	1.3	7.9	ΟK
8640	min	Summer	7.040	0.540	0.0	1.2	1.2	7.9	ОК
10080	min	Summer	7.038	0.538	0.0	1.1	1.1	7.9	ОК
15	min	Winter	7.162	0.662	0.0	16.9	16.9	9.7	ΟK

Storm	Rain	Flooded	Discharge	Time-Peak	
Event	(mm/hr)	Volume	Volume	(mins)	
		(m³)	(m³)		
15	22 217	0.0	6 7	1.0	
15 min Summer	33.31/	0.0	6./	18	
30 min Summer	23.154	0.0	12.2	24	
60 min Summer	15.530	0.0	18.8	38	
120 min Summer	10.149	0.0	26.8	68	
180 min Summer	7.867	0.0	32.4	98	
240 min Summer	6.555	0.0	36.8	128	
360 min Summer	5.058	0.0	43.7	188	
480 min Summer	4.204	0.0	49.2	248	
600 min Summer	3.641	0.0	53.9	308	
720 min Summer	3.236	0.0	58.0	368	
960 min Summer	2.686	0.0	64.9	488	
1440 min Summer	2.065	0.0	76.0	722	
2160 min Summer	1.587	0.0	88.7	1096	
2880 min Summer	1.317	0.0	98.9	1452	
4320 min Summer	1.011	0.0	115.1	2192	
5760 min Summer	0.838	0.0	127.9	2864	
7200 min Summer	0.725	0.0	138.8	3592	
8640 min Summer	0.643	0.0	148.4	4336	
10080 min Summer	0.582	0.0	156.9	4960	
15 min Winter	33 317	0.0	8 4	18	
TO WILL WILLCEL	55.517	0.0		10	
©198	32-2017	XP Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L'
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamacje
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Storm		Max	Max Max		Max Max		Max	Status	
Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume		
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min N	Winter	7.183	0.683	0.0	20.1	20.1	10.0	ОК
60	min N	Winter	7.169	0.669	0.0	17.9	17.9	9.8	ΟK
120	min N	Winter	7.134	0.634	0.0	12.8	12.8	9.3	ОК
180	min N	Winter	7.120	0.620	0.0	10.2	10.2	9.1	ОК
240	min N	Winter	7.111	0.611	0.0	8.6	8.6	8.9	ΟK
360	min N	Winter	7.099	0.599	0.0	6.6	6.6	8.8	ОК
480	min N	Winter	7.089	0.589	0.0	5.5	5.5	8.6	ΟK
600	min N	Winter	7.082	0.582	0.0	4.8	4.8	8.5	ΟK
720	min N	Winter	7.078	0.578	0.0	4.3	4.3	8.4	ΟK
960	min N	Winter	7.071	0.571	0.0	3.6	3.6	8.3	ΟK
1440	min N	Winter	7.062	0.562	0.0	2.7	2.7	8.2	ΟK
2160	min N	Winter	7.054	0.554	0.0	2.1	2.1	8.1	ΟK
2880	min N	Winter	7.049	0.549	0.0	1.7	1.7	8.0	ΟK
4320	min N	Winter	7.043	0.543	0.0	1.3	1.3	7.9	ОК
5760	min N	Winter	7.039	0.539	0.0	1.1	1.1	7.9	ΟK
7200	min N	Winter	7.036	0.536	0.0	1.0	1.0	7.8	ОК
8640	min N	Winter	7.034	0.534	0.0	0.9	0.9	7.8	ΟK
10080	min N	Winter	7.032	0.532	0.0	0.8	0.8	7.8	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	23.154	0.0	14.5	24
60	min	Winter	15.530	0.0	21.9	38
120	min	Winter	10.149	0.0	30.9	68
180	min	Winter	7.867	0.0	37.1	96
240	min	Winter	6.555	0.0	42.0	126
360	min	Winter	5.058	0.0	49.8	188
480	min	Winter	4.204	0.0	56.0	250
600	min	Winter	3.641	0.0	61.2	312
720	min	Winter	3.236	0.0	65.8	368
960	min	Winter	2.686	0.0	73.6	490
1440	min	Winter	2.065	0.0	86.0	722
2160	min	Winter	1.587	0.0	100.2	1096
2880	min	Winter	1.317	0.0	111.6	1432
4320	min	Winter	1.011	0.0	129.7	2168
5760	min	Winter	0.838	0.0	144.2	2904
7200	min	Winter	0.725	0.0	156.4	3656
8640	min	Winter	0.643	0.0	167.1	4408
10080	min	Winter	0.582	0.0	176.6	5000
Cameron & Ross		Page 3				
---	--	-----------				
15 Victoria Street	A/210321 - Cairston Road					
Aberdeen	North - Filter Trench Calc	L.				
AB10 1XB		Micro				
Date 09/08/2022	Designed by JMA	Drainario				
File A210321 - Filter Trench	Checked by	Diamage				
CADS	Source Control 2017.1.2					
Ba	ainfall Details					
<u></u>						
Rainfall Model	FSR Winter Storms	Yes				
Return Period (years)	10 Cv (Summer) 0.	750				
M5-60 (mm)	13.000 Shortest Storm (mins)	15				
Ratio R	0.250 Longest Storm (mins) 10	080				
Summer Storms	Yes Climate Change %	+0				
<u>Ti</u>	me Area Diagram					
Tot	cal Area (ha) 0.224					
Time (mins) Area T From: To: (ha) Fr	ime (mins) Area Time (mins) Area rom: To: (ha) From: To: (ha)					
0 4 0.074	4 8 0.075 8 12 0.075					
	1					
	2017 ND 0-1					
©1982	-201/ XP Solutions					

Cameron & Ross					
15 Victoria Street	A/210321 - Cairston Road				
Aberdeen	North - Filter Trench Calc	L.			
AB10 1XB		Micco			
Date 09/08/2022	Designed by JMA				
File A210321 - Filter Trench	Checked by	Diamaye			
CADS	Source Control 2017.1.2				

Model Details

Storage is Online Cover Level (m) 7.500

Filter Drain Structure

Infiltration Coefficient Base (m/hr)0.00000Pipe Diameter (m)0.225Infiltration Coefficient Side (m/hr)0.0000Pipe Depth above Invert (m)0.000Safety Factor2.0Slope (1:X)150.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)6.500Cap Infiltration Depth (m)0.000Trench Width (m)5.0Number of Pipes1Trench Length (m)10.010.010.0

Pipe Outflow Control

Diameter (m)	0.225	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	13.500	Upstream Invert Level (m)	7.000
Roughness k (mm)	0.600		

Cameron & Ross		Page 1
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	4
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Digitight
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 18 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(l/s)	(m³)	
15	min	Cummor	7 022	0 522	0 0	0 0	0 9	7 0	0 K
10		Gumman	7.033	0.555	0.0	0.0	0.0	7.0	O K
50	min .	Summer	7.095	0.595	0.0	0.0	6.0	0./	0 K
100	min .	summer	7.112	0.612	0.0	8./	8./	8.9	OK
120	min :	Summer	7.112	0.612	0.0	8.8	8.8	9.0	OK
180	min	Summer	7.106	0.606	0.0	7.6	7.6	8.9	ОК
240	min	Summer	7.098	0.598	0.0	6.6	6.6	8.8	ΟK
360	min	Summer	7.087	0.587	0.0	5.4	5.4	8.6	ΟK
480	min	Summer	7.080	0.580	0.0	4.6	4.6	8.5	ΟK
600	min	Summer	7.076	0.576	0.0	4.1	4.1	8.4	ОК
720	min	Summer	7.072	0.572	0.0	3.7	3.7	8.4	ОК
960	min	Summer	7.066	0.566	0.0	3.1	3.1	8.3	ΟK
1440	min	Summer	7.058	0.558	0.0	2.4	2.4	8.1	ОК
2160	min	Summer	7.051	0.551	0.0	1.9	1.9	8.0	ОК
2880	min	Summer	7.047	0.547	0.0	1.6	1.6	8.0	ОК
4320	min	Summer	7.041	0.541	0.0	1.3	1.3	7.9	ΟK
5760	min	Summer	7.038	0.538	0.0	1.1	1.1	7.8	ΟK
7200	min	Summer	7.035	0.535	0.0	0.9	0.9	7.8	ОК
8640	min	Summer	7.033	0.533	0.0	0.8	0.8	7.8	ОК
10080	min	Summer	7.031	0.531	0.0	0.7	0.7	7.7	ОК
15	min 1	Winter	7.063	0.563	0.0	2.9	2.9	8.2	ОК

	Storm		Rain	Floc	ded	Dischar	ge	Time-Peak	
	Even	t	(mm/hr)	Vol	ume	Volume	e	(mins)	
				(m	³)	(m³)			
15	min	Summer	19.000		0.0	0	.7	24	
30	min	Summer	13.218		0.0	3	.8	28	
60	min	Summer	8.918		0.0	7	.7	42	
120	min	Summer	5.920		0.0	12	.6	68	
180	min	Summer	4.641		0.0	16	.1	98	
240	min	Summer	3.903		0.0	18	.9	128	
360	min	Summer	3.055		0.0	23	.5	188	
480	min	Summer	2.569		0.0	27	.2	248	
600	min	Summer	2.246		0.0	30	.4	308	
720	min	Summer	2.013		0.0	33	.3	368	
960	min	Summer	1.694		0.0	38	.3	490	
1440	min	Summer	1.326		0.0	46	.2	734	
2160	min	Summer	1.034		0.0	55	.2	1080	
2880	min	Summer	0.866		0.0	62	.5	1464	
4320	min	Summer	0.675		0.0	74	.4	2140	
5760	min	Summer	0.566		0.0	84	.1	2864	
7200	min	Summer	0.494		0.0	92	.3	3672	
8640	min	Summer	0.441		0.0	99	.4	4288	
10080	min	Summer	0.401		0.0	105	.8	5128	
15	min	Winter	19.000		0.0	1	.7	21	
		©198	32-2017	ХP	Sol	utions			

Cameron & Ross	Page 2	
15 Victoria Street	A/210321 - Cairston Road	
Aberdeen	North - Filter Trench Calc	L.
AB10 1XB		Micco
Date 09/08/2022	Designed by JMA	
File A210321 - Filter Trench	Checked by	Diamacje
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

	Storm Event	n :	Max Level	Max Depth (m)	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(111)	(111)	(1/3)	(1/3)	(1/3)	()	
30	min V	Winter	7.108	0.608	0.0	8.0	8.0	8.9	ОК
60	min V	Winter	7.116	0.616	0.0	9.6	9.6	9.0	ОК
120	min V	Winter	7.105	0.605	0.0	7.5	7.5	8.9	ОК
180	min V	Winter	7.093	0.593	0.0	6.0	6.0	8.7	ОК
240	min V	Winter	7.085	0.585	0.0	5.1	5.1	8.5	ОК
360	min V	Winter	7.075	0.575	0.0	4.0	4.0	8.4	ΟK
480	min V	Winter	7.070	0.570	0.0	3.4	3.4	8.3	ΟK
600	min V	Winter	7.065	0.565	0.0	3.0	3.0	8.2	ОК
720	min V	Winter	7.061	0.561	0.0	2.7	2.7	8.2	ОК
960	min V	Winter	7.056	0.556	0.0	2.3	2.3	8.1	ОК
1440	min V	Winter	7.050	0.550	0.0	1.8	1.8	8.0	ОК
2160	min V	Winter	7.043	0.543	0.0	1.4	1.4	7.9	ОК
2880	min V	Winter	7.040	0.540	0.0	1.2	1.2	7.9	ОК
4320	min V	Winter	7.035	0.535	0.0	0.9	0.9	7.8	ΟK
5760	min V	Winter	7.032	0.532	0.0	0.8	0.8	7.8	ОК
7200	min V	Winter	7.029	0.529	0.0	0.7	0.7	7.7	ОК
8640	min V	Winter	7.027	0.527	0.0	0.6	0.6	7.7	ΟK
10080	min V	Winter	7.025	0.525	0.0	0.5	0.5	7.7	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	13.218	0.0	5.1	27
60	min	Winter	8.918	0.0	9.5	40
120	min	Winter	5.920	0.0	15.0	68
180	min	Winter	4.641	0.0	18.9	98
240	min	Winter	3.903	0.0	22.1	128
360	min	Winter	3.055	0.0	27.2	186
480	min	Winter	2.569	0.0	31.4	248
600	min	Winter	2.246	0.0	35.0	310
720	min	Winter	2.013	0.0	38.2	368
960	min	Winter	1.694	0.0	43.7	492
1440	min	Winter	1.326	0.0	52.6	732
2160	min	Winter	1.034	0.0	62.7	1108
2880	min	Winter	0.866	0.0	70.9	1452
4320	min	Winter	0.675	0.0	84.2	2216
5760	min	Winter	0.566	0.0	95.0	2912
7200	min	Winter	0.494	0.0	104.2	3576
8640	min	Winter	0.441	0.0	112.2	4288
10080	min	Winter	0.401	0.0	119.4	5008

©1982-2017 XP Solutions

Comerce & Pess		Page 3
15 Mistoria Otrest	2/210221 Contractor Dead	raye 5
15 victoria Street	A/210321 - Cairston Road	2
Aberdeen	North - Filter Trench Calc	1 m
AB10 1XB		Micro
Date 09/08/2022	Designed by JMA	Drainage
File A210321 - Filter Trench	Checked by	Diamage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years) Region Scotla	nd and Ireland Cv (Summer) 0.	840
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 10	080
Summer Storms	Yes Climate Change %	+0
<u>'l'ın</u>	ne Area Diagram	
Tota	al Area (ha) 0.224	
Time (mins) Area Ti	ime (mins) Area Time (mins) Area	
From: To: (ha) Fr	om: To: (ha) From: To: (ha)	
0 4 0.074	4 8 0.075 8 12 0.075	
1	I	
©1982-	-2017 XP Solutions	

Cameron & Ross					
15 Victoria Street	A/210321 - Cairston Road				
Aberdeen	North - Filter Trench Calc	L'			
AB10 1XB		Micco			
Date 09/08/2022	Designed by JMA				
File A210321 - Filter Trench	Checked by	Diamaye			
CADS	Source Control 2017.1.2				

Model Details

Storage is Online Cover Level (m) 7.500

Filter Drain Structure

Infiltration Coefficient Base (m/hr)0.00000Pipe Diameter (m)0.225Infiltration Coefficient Side (m/hr)0.0000Pipe Depth above Invert (m)0.000Safety Factor2.0Slope (1:X)150.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)6.500Cap Infiltration Depth (m)0.000Trench Width (m)5.0Number of Pipes1Trench Length (m)10.010.010.0

Pipe Outflow Control

Diameter (m)	0.225	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	13.500	Upstream Invert Level (m)	7.000
Roughness k (mm)	0.600		

INTERNAL MEMORANDUM TO: Development & Marine Planning - Policy Advice

Date of Consultation	30th May 2023	
Response required by	20th June 2023	
Planning Authority Reference	22/382/PP	
Nature of Proposal	Erect 10 houses with air source heat pumps, construct	
(Description)	a road and associated landscaping and infrastructure	
Site	Cairston Road (Land Near),	
	Stromness,	
	Orkney,	
	KW16 3JS	
Proposal Location Easting	326018	
Proposal Location Northing	1010016	
Area of application site	4962	
(Metres)		
Supporting Documentation	http://planningandwarrant.orkney.gov.uk/online-	
URL	applications/	
	Please enter - 22/382/PP	
PA Office	Development Management	
Case Officer	Mr Jamie Macvie	
Case Officer Phone number	01856 873535 EXT 2529	
Case Officer email address	jamie.macvie@orkney.gov.uk	
PA Response To	planningconsultation@orkney.gov.uk	

Comments:

Development and Marine Planning previously assisted with pre-application advice (dated 25th November 2022), followed by an initial application response (dated 20th June 2023) which is referred to within the following comments.

- 1. Following submission of additional visuals of the proposed development from wider viewpoints around the North Stromness Area, we are satisfied that the proposed heights within the development do not adversely impact the surrounding area and are appropriate to this part of Stromness given the site's context and location.
- 2. Amendments to the internal configuration of Plot One, with the inclusion of the additional window to create more active frontage onto Cairston Road is welcomed and addresses DMP's previous comment on the need for more passive surveillance within the design.
- 3. The use of a permeable surface within the amended SUDS maintenance area in the south of the site is welcomed and supported.

Based on the design amendments and supporting information previous comments submitted by Development and Marine have now been satisfactorily addressed.

Date of Consultation	22nd August 2023	
Response required by	12th September 2023	
Planning Authority Reference	22/382/PP	
Nature of Proposal	Erect 10 houses with air source heat pumps, construct	
(Description)	a road and associated landscaping and infrastructure	
Site	Cairston Road (Land Near),	
	Stromness,	
	Orkney,	
	KW16 3JS	
Proposal Location Easting	326018	
Proposal Location Northing	1010016	
Area of application site	4962	
(Metres)		
Supporting Documentation	http://planningandwarrant.orkney.gov.uk/online-applica	
URL	tions/	
	Please enter - 22/382/PP	
PA Office	Development Management	
Case Officer	Mr Jamie Macvie	
Case Officer Phone number	01856 873535 EXT 2529	
Case Officer email address	jamie.macvie@orkney.gov.uk	
PA Response To	planningconsultation@orkney.gov.uk	

INTERNAL MEMORANDUM TO: Engineering Services

Comments:

Flood Risk

Previous comments relating to flood risk were included in the OIC Roads response to 22/382/PP following consultation with OIC Engineering.

• Water quality: The proposed system is buried and therefore offers no co-benefits in terms of green space or potential for increased biodiversity and is heavily reliant upon planned inspection and maintenance. As such the system does not represent best practice for a new development.

With no information provided on the proposed vortex separator device we are not able to assess its immediate or long-term performance.

 Description of system: The proposed development does not discharge directly to the sea. It is therefore not comparable to the existing Cairston Road development which does. There are no flooding receptors between the existing Cairston Road development and the sea. In contrast, the proposed development could contribute to flooding downstream, with potential receptors including the existing Cairston Road development and the Oakdene development.

The proposed development does not discharge directly to the sea but to a surface water drainage system. The ability of that system to take flows from developments at greater than greenfield rates and volumes is unknown and the resilience of the existing system

to predicted increased flows resulting from climate change is likely to be adversely affected.

- A maintenance plan has not been provided. Comment from C&R advises that this would be provided when an overall SuDS and drainage strategy has been agreed.
- C&R comment advises that information on proposed construction phase SuDS would be provided in a surface water drainage statement [which would be provide after an overall SuDS drainage strategy had been agreed].

OIC Engineering does not consider the existing SuDS and drainage to be suitable for the reasons described above.

PW

Date of Consultation	22nd August 2023	
Response required by	12th September 2023	
Planning Authority Reference	22/382/PP	
Nature of Proposal	Erect 10 houses with air source heat pumps, construct	
(Description)	a road and associated landscaping and infrastructure	
Site	Cairston Road (Land Near),	
	Stromness,	
	Orkney,	
	KW16 3JS	
Proposal Location Easting	326018	
Proposal Location Northing	1010016	
Area of application site	4962	
(Metres)		
Supporting Documentation	http://planningandwarrant.orkney.gov.uk/online-applica	
URL	tions/	
	Please enter - 22/382/PP	
PA Office	Development Management	
Case Officer	Mr Jamie Macvie	
Case Officer Phone number	01856 873535 EXT 2529	
Case Officer email address	jamie.macvie@orkney.gov.uk	
PA Response To	planningconsultation@orkney.gov.uk	

INTERNAL MEMORANDUM TO: Roads Services

Comments:

As previously advised while the formation of crossroads should generally be avoided, however in this instance to ensure adequate visibility from the access to the development site there is little option other than to create a crossroads style of junction, therefore in this instance it would be acceptable.

However, it is noted that there has been no amendment made to the footpath from the development at its junction with Cairston Road, where it was previously requested that the sections of footway should be extended to provide pedestrian crossing points. However, this is something that could be achieved by an appropriate planning condition.

D.W.

Planning Authority Name	Orkney Islands Council
Date of Consultation	16th January 2024
Response required by	6th February 2024
Planning Authority Reference	22/382/PP
Nature of Proposal	Erect 10 houses with air source heat pumps,
(Description)	construct a road and associated landscaping and
	infrastructure
Site	Cairston Road (Land Near),
	Stromness,
	Orkney,
	KW16 3JS
Site Postcode	N/A
Site Gazetteer UPRN	
Proposal Location Easting	326018
Proposal Location Northing	1010016
Area of application site	4962
(Ivietres)	
Ciamication of Specific	
Reasons for Consultation	N/A
Supporting Documentation	N/A http://planningandwarrant.orknov.gov.uk/online
	applications/
OIL	
	Please enter - 22/382/PP
List of Available Supporting	As above URL
Documentation	
Offline Documents available?	N/A
Date of Validation by Planning	23rd November 2022
Authority	
Governing Legislation	TOWN AND COUNTRY PLANNING (SCOTLAND) ACTS
	DEVELOPMENT MANAGEMENT PROCEDURE
	(SCOTLAND) REGULATIONS 2013
Consultation Type	
Consultation Stage	
is this a re-consultation of an	TES
	No
FIA Regulations	Ν/Δ
Use Class (Current)	
Use Class (Proposed)	
Does the application conform	
with the Structure Plan / Local	
Plan Land Use	
Additional Comments relating	N/A
to Structure Plan / Local Plan	
Use	
Transport Assessment or	N/A
Travel Plan	
Applicant Name	Orkney Builders Ltd
Applicant Organisation Name	
Applicant Address	Orkney Builders Ltd
	Hatston Road
	Crowness

	Kirkwall Orkney KW15 1RG
Agent Name	Bracewell Stirling
Agent Organisation Name	
Agent Address	C/o Lisa Balnave 5 Ness Bank Inverness United Kingdom IV2 4SF
Agent Phone Number	N/A
Agent Email Address	N/A
PA Office	Development Management
Case Officer	Mr Jamie Macvie
Case Officer Phone number	01856 873535 EXT 2529
Case Officer email address	jamie.macvie@orkney.gov.uk
PA Response To	planningconsultation@orkney.gov.uk

Flood Risk

A peak rainfall intensity allowance matching the requirement in Version 1 of SEPA LUPS-CC1 of 35% is acceptable as we transition towards the current SEPA recommendation of 40% from Version 2 of the document.

The approach presented on Sketch 007 Option 1 - Surface Water and SuDS Layout Plan, described in correspondence J. Anderson (C&R) to P Woodward (OIC Eng) 15th Jan 2024 and summarised in Surface Water Drainage Design information is generally acceptable. However, the following points should be addressed:

- Surface water which will currently flow onto the site from adjacent land must be prevented from entering the development site and attenuated prior to discharge. Information on how this would be done is required.
- The discharge from the proposed development should be to the underground surface water system downstream from the culvert inlet screen – as discussed during the Teams meeting regarding this application on 15th November last year – and not to the ditch as indicated on Sketch 007.

Further information is required on the following:

- Filter drain construction confirming that these are designed in accordance with The SuDS Manual 2015.
- It is understood from the meeting on 15th November that the surface water drainage system would remain private and that maintenance of the surface water system would be by factors. Information on the type and frequency of the maintenance proposed is required.

Orkney Builders Cairston Road North Stromness

Responses to OIC Engineering Comments, received on 04/03/24

The following document provides responses to the specific comments received from OIC engineering in relation to the surface water design proposals and calculations submitted for review on 15/01/24.

Comment 1

Surface water which will currently flow onto the site from adjacent land must be prevented from entering the development site and attenuated prior to discharge. Information on how this would be done is required.

Response 1

C+R has carried out a review of the areas of land out-with the proposed site boundary to assess which, if any, of these areas may drain towards the proposed development site.

In carrying out this assessment C+R has utilised the 3D topographical survey of the development site, which includes some of the area out-with the development boundary to the northwest of the site. Using 3D design software, C+R can generate overland flow arrows on the 3D topo survey, which show the direction of overland flow based on the as-surveyed levels and contours.

We do not have any survey levels for the area to the north of the development site, where the existing property boundaries meet the Cairston Road North boundary. However, we are aware that these existing properties have a retaining wall along their southern boundary, with the high side of the wall being on the side for the existing properties. The retaining walls should be constructed with drainage to the rear of the walls, therefore preventing any run-off from these properties entering the Cairston Road North site.

The area to the northwest of the development site, currently open fields, has been partially surveyed. An analysis of the overland flow arrows has been carried out by C+R using the 3D topo survey information, as described in the 2nd paragraph, above. The results of the analysis show that surface water run-off from the adjacent field is running past the northwestern boundary of the site, towards the existing properties along the western boundary of the Cairston Road North development, rather than flowing towards the development.

C+R have created a drawing, 210321-000-CAM-DR-C-260, which shows the overland flow arrows based on the 3D topo survey levels and contours. The aforementioned drawing has been submitted with this response.

Cameron+Ross

Civil + Structural Engineering

Comment 2

The discharge from the proposed development should be to the underground surface water system downstream from the culvert inlet screen – as discussed during the Teams meeting regarding this application on 15th November last year – and not to the ditch as indicated on Sketch 007.

Response 2

James Anderson from C+R discussed the above comment with Peter Woodward from OIC Engineering on 05/03/24. Peter agreed that as there were no existing manholes or chamber on the line of the 600mm culvert to connect into, he would be satisfied for the proposed outfall headwall to discharge directly to the existing ditch, as shown on C+R Drg. 210321-000-CAM-DR-C-400 – Rev H.

Peter confirmed this conversation via email on 06/03/24, with the planning department in copy.

Comment 3

Filter drain construction – confirming that these are designed in accordance with The SuDS Manual 2015.

Response 3

C+R can confirm that all SuDS components, including the filter drains, pervious paving and the cellular attenuation tank, will be constructed in accordance with the recommendations and guidance within CIRA C753, The SuDS Manual – 2015.

Comment 4

It is understood from the meeting on 15th November that the surface water drainage system would remain private and that maintenance of the surface water system would be by factors. Information on the type and frequency of the maintenance proposed is required."

Response 4

As stated above, due to the design of the surface water drainage system, which meets the requirements of OIC Engineering, the entire system including pipework, SuDS components and attenuation tanks, will need to remain private, as Scottish Water or OIC would not adopt such a system.

The in-curtilage SuDS measures, i.e. the pervious paviours, will be the responsibility of the individual property owners to inspect and maintain, or to appoint a responsible person to do this on their behalf. An operation and maintenance guidance schedule has been provided in Appendix H of the Drainage Report submitted with this response (Report No: 210321-000-CAM-RP-C-001). The operation and maintenance schedule is in accordance with the guidance in CIRIA C753, The SuDS Manual.

The surface water drainage system outwith the plot curtilages will be maintained by a suitably qualified factor, to be appointed by Orkney Builders. The factor will be responsible for the surface water sewer pipes, the SuDS filter drains, the cellular attenuation and all inlet and outlet chamber, headwalls and orifices associated with the surface water drainage network.

Cameron+Ross

Civil + Structural Engineering

As with the private SuDS devices, C+R has provided operation and maintenance schedules for the SuDS filter drains and cellular storage area within Appendix H of the Drainage Report submitted with this response (Report No: 210321-000-CAM-RP-C-001). The operation and maintenance schedules are in accordance with the guidance in CIRIA C753, The SuDS Manual.

Orkney Builders will arrange for legal agreements to be put in place to ensure that the aforementioned maintenance regimes are implemented and the burden on maintenance is clear and falls on the relevant parties.

End of response

JMA-07/03/24

Drainage Report Cairston Road North, Stromness

prepared for Orkney Builders 210321-000-CAM-RP-C-001 – March 2024

Document Issue Record

Revision	Description	Issued by	Checked by	Date
-	Initial Issue	J. Anderson	R. Gibb	07/03/24

This report has been prepared for the sole benefit, use, and information for the client. The liability of Cameron + Ross with respect to the information contained in the report will not extent to any third party.

Authorisation Record

Author		Signature	Date
Name:	James Anderson	1/1	07/03/24
Position:	Engineer	44	

Approver		Signature	Date
Name:	Russell Gibb	Putto	07/03/24
Position:	Director	Jane Ook	

Table of Contents

1.	Introduction				
2.	Site Description				
3.	Site Investigation				
4.	Development Proposals				
5.	Foul Drainage Proposals				
6.	Surface Water Drainage Proposals7				
7.	Assessment of Flood Risk				
8.	Future Maintenance				
9.	Construction Phase				
C	Control:				
I	nterception:				
F	Prevention:				
10.	10. Summary & Conclusions				

Appendices

Appendix A – Location Site Plan.
Appendix B – Extract of Scottish Water GIS.
Appendix C – SEPA Flood Map.
Appendix D – Development Layout Plan.
Appendix E – Drainage Layout Plan.
Appendix F– Pre & Post Development Greenfield Run-off Calculations.
Appendix G – Surface Water SuDS Calculations (M1 to M200 + 35% Results).
Appendix H – SuDS Operation and Maintenace Guidance.

1. Introduction

- 1.1 Cameron + Ross have been appointed by Orkney Builders to prepare a Drainage Statement in support of a planning application for the development of 10 domestic properties at Cairston Road, Stromness, Orkney. The application consists of the 10 proposed domestic properties, along with access roads, individual plot driveways, and associated surface water and foul drainage infrastructure.
- 1.2 This Drainage Statement concentrates on the drainage infrastructure for the development and considers the appropriate drainage proposals in accordance with the following documents.
 - Water Assessment & Drainage Assessment Guide A guidance document for developers, planners and others involved in water & drainage, produced by SEPA on behalf of the Sustainable Urban Drainage Scottish Working Party (SUDSWP), January 2016.
 - Planning Advice Note (PAN) 61: Planning and Sustainable Urban Drainage Systems, issued by the Scottish Executive Development Department, July 2001.
 - The SUDS Manual (CIRIA C753), Published 2015.
 - Sewers for Scotland, Fourth Edition, October 2018, published by WRc plc.
 - The Water Environment (Controlled Activities) (Scotland) Regulations.
- 1.3 This report will establish the suitability of the site for development and identify the drainage principles in recognition of the aforementioned documents to satisfy source control, conveyance, attenuation, treatment, and enhanced amenity.

2. Site Description

- 2.1 The proposed development site extends to approximately 0.49 hectares. The development site is currently greenfield agricultural land.
- 2.2 The development site is located on the north side of Cairston Road, Stromness, Orkney. The approximate site centre co-ordinates are: 326013N, 1010013N (HY 26013 10013).

Refer to Location Site Plan in Appendix A of this report.

2.3 There is an existing 150mm diameter public combined sewer within the Cairston Road North development boundary. This existing sewer provides adequate opportunity to connect the foul waste from the development to a public sewerage network. However, the line of the existing combined sewer will require to be amended to suit the alignment of the proposed development roads, and the existing property connections from the 3 properties to the north of the development site will require to be altered to connect into the diverted combined sewer. There are no suitable surface water sewers within the immediate vicinity of the development site, therefore alternative methods of draining surface water run-off from the development have been investigated.

Refer to Location Site Plan in **Appendix A** of this report. Refer to extract of Scottish Water GIS in **Appendix B** of this report.

3. Site Investigation

3.1 No intrusive site investigations have been carried out on this site. However, an appraisal of the Wallingford Maps has been undertaken to establish likely site conditions. The appraisal of the Wallingford Maps provided the following information:

SAAR = 1,050 M5-60 rainfall depth = 13mm

M5-60 ratio R = 0.25 Soil Index = 0.5

4. Development Proposals

4.1 The proposed development comprises a total of 10 private domestic dwellings. An adoptable access road is to be constructed to serve all 10 properties, with 8 properties served directly off the proposed adoptable access road. Two of the properties, Plots 2 & 3, will be served off a private access driveway which connects to the proposed adoptable public road. Plots 1 to 6 will each have their own private driveway, with Plots 7-10 served by parking bays adjacent to the adoptable access road. Appropriate surface water, SUDS and foul drainage infrastructure are required to serve the development, alongside relevant utilities, such as electricity and telecoms services.

Refer to Development Layout Plan in Appendix D of this report.

5. Foul Drainage Proposals

- 5.1 As noted under item 2.3, above, there is an existing 150mm VC public combined sewer running through the development site from northeast to southwest. The existing combined sewer accepts foul plot connections from the 3 existing properties to the north of the development site. The alignment of the existing combined sewers will require to be amended to suit the position of the proposed road carriageways, thus ensuring that the mainline sewers infrastructure is mostly located within an adoptable road. The southern end of the realigned combined sewer will require to be beneath the proposed private driveway and SuDS access area. A pipe servitude will therefore require to be agreed with Scottish Wate to allow for future access and maintenance of the combined sewer within this area.
- 5.2 The 10 proposed properties will connect to the realigned adopted combined sewer via traditional gravity connections. Each property will be provided with its own disconnecting chamber and pipework to the mainline sewer.
- 5.3 No pumping of foul effluent is required for this development.

Refer to Drainage Layout Plan in Appendix E of this report.

6. Surface Water Drainage Proposals

6.1 An assessment of the pre-development greenfield run-off calculations has been undertaken. The results of the analysis are as follows:

Pre-Development Greenfield Run-off Calculations

Total development area = 4,897m²

M13.7 l/sM106.3 l/sM308.3 l/sM10010.6 l/sM20012.2 l/s

Refer to pre & post-development run-off calculations in $\ensuremath{\mathsf{Appendix}}\xspace F$ of this report.

6.2 The proposed site is to be developed for residential use and will likely result in a low risk of contamination from surface water run-off. In accordance with SEPA's Regulatory Method (WAT-RM-08), the expected levels of treatment for roofs and roads are summarised in the table below:

Table 1: SUDS Tre	Table 1: SUDS Treatment Proposals			
Site Element	Pollutant Source	Required Treatment Level		
1	Housing Roads	Light vehicular traffic movements, one		
	(<50 dwellings)	level of treatment.		
2	Housing Roads	Moderate vehicular traffic movements,		
	(>50 dwellings)	two levels of treatment.		
3	Commercial	Potential for regular Service Vehicles,		
	Parking Arear	two levels of treatment.		
4	Roofs	One level of treatment.		

6.3 All of the SUDS devices suggested in CIRIA's publication C753 "SUDS (Sustainable Urban Drainage Systems) Design Manual" Table 1.1, have been considered as part of the surface water drainage network for this development.

Due to the impermeability of the existing sub-soils, it is considered that SuDS infiltration devices are not suitable for use within this development site as part of any

SuDS train. Alternative methods of treating and disposing of surface water run-off have therefore been assessed.

It is proposed that the driveways for Plots 1 to 6 will be constructed with pervious block paviours. The pervious paving sub-base will be designed of sufficient depth to also allow for the roof water drainage to connect into the driveway sub-base. Each plot will have a control chamber with a simple orifice plate, restricting the outflow to the mainline surface water sewer as much as is reasonably practicable. The pervious block paviours and sub-base will provide sufficient levels of treatment for the roof and driveway run-off.

It should be noted that the pervious paving system does not allow for any infiltration into the sub-soils. This would be considered as a Type C system.

Plot Number	House Roof	Driveway Area	Total + 10% for
	Area (m²)	(m²)	urban creep
1	171	40	235
2	119	37	172
3	49	45	103
4	49	50	109
5	49	41	99
6	49	36	94

Plot 1 to 6 contributing development hard-standing areas are summarized in the table below:

Individual pervious paving calculations have been produced for each of the 6 plots, with the M1 to M200 + 35% results contained within *Appendix G* of this report.

Plot Number	M1	M10	M30 + 35%	M100 + 35%	M200 + 35%
1	0.4	0.6	0.9	1.0	1.1
2	0.4	0.6	0.8	0.9	1.0

The pervious paving calculations results are summarised in the table below:

3	0.3	0.4	0.5	0.6	0.7
4	0.3	0.4	0.5	0.6	0.7
5	0.3	0.4	0.5	0.6	0.6
6	0.3	0.4	0.5	0.6	0.6

Based on the above pervious paving calculations results, the total outflow from Plots 1 to 6 to the surface water sewers network would be 3.7 l/s in the M30 + 35% storm event, and 4.7 l/s in the M200 + 35% storm event.

6.4 For run-off from the development roads and footways it is proposed to treat and attenuate the surface water within road-side filter trenches. Due to the gradients of the main access road into the development, it is not feasible to drain all of the roads and footways to the road-side filter drains, therefore a further filter drain is specified at the downstream end of the surface water network, specifically to treat the section of road which cannot be discharged to the road-side filter drains on the upstream surface water network.

Rather than provide one continuous road-side filter drain, the surface water design allows for two separate filter drains, with control chambers at the downstream end of both trenches. The reason for this is that due to the access road gradients, and therefore the gradients of the base of the filter drains, the attenuation capacity within a single continuous trench would not be maximised, with the attenuated water spilling out at the downstream end, with no attenuation provided at the upstream end. Providing two shorter lengths of filter drain with a control manhole on each, allows for the attenuation capacity within each trench to be better utilised.

The proposed filter trenches, both the road-side filter trenches and the filter trench at the end of the surface water network provide a level of treatment for the roads water run-off.

The filter drain at the downstream end of the surface water network is designed to provide treatment only, as surface water run-off attenuation is provided upstream within the pervious paving areas, the road-side filter drains and the cellular attenuation area.

Individual SuDS filter drain calculations have been run for the two road-side filter drains, based on the contributing areas to those devices. The results of the filter drainage calculations including cascade results of Filter Drain 1 connecting to Filter Drain 2 can be found in *Appendix G* of this report.

The following is a summary of the filter drain designs and calculation results:

Road-side Filter Drain 1

- Contributing area = 740m² (This includes the roof areas for Plots 7-10 which discharge directly into the surface water sewer upstream of Filter Drain 1).
- Filter drain structure = 12.0m long x 1.0m wide x 1.5m deep.
- Orifice outflow control = 80mm orifice plate in Mh. S3.

Discharge results

 $\begin{array}{ll} \mathsf{M1} &= 6.2 \ \mathsf{I/s} \\ \mathsf{M10} &= 9.2 \ \mathsf{I/s} \\ \mathsf{M30} + 35\% &= 12.5 \ \mathsf{I/s} \\ \mathsf{M100} + 35\% &= 14.5 \ \mathsf{I/s} \\ \mathsf{M200} + 35\% &= 15.8 \ \mathsf{I/s} \end{array}$

Road-side Filter Drain 2

- Contributing area = 240m²
- Filter drain structure = 21.0m long x 1.0m wide x 1.5m deep.
- Orifice outflow control = 80mm orifice plate in Mh. S4.

Discharge results

 $\begin{array}{ll} \mathsf{M1} &= 2.2 \; \mathsf{I/s} \\ \mathsf{M10} &= 3.8 \; \mathsf{I/s} \\ \mathsf{M30} + 35\% &= 6.0 \; \mathsf{I/s} \\ \mathsf{M100} + 35\% &= 7.3 \; \mathsf{I/s} \\ \mathsf{M200} + 35\% &= 8.1 \; \mathsf{I/s} \\ \end{array}$

The above Filter Drain 2 calculation results only account for the outflow in relation to the contributing areas directly associated with Filter Drain 2 but, do not include the total outflow when also accounting for the flows entering Filter Drain 2 from Filter Drain 1. As such, a 'cascade' calculation has been run in WinDes Source Control which allows for analysis of Filter Drain 2, including the direct contributing areas + the inflow from Filter Drain 1.

The following is a summary of the cascade results, which shows the total outflow from Filter Drain 2 (*Refer also to cascade results in Appendix G of this report*):

M10	= 10.1 l/s
M30 + 35%	= 12.8 l/s
M100 + 35%	= 14.4 l/s
M200 + 35%	= 15.4 l/s

At this stage of the surface water drainage design, we carried out a comparison of the pre-development greenfield run-off rates versus the design outflow rates from Filter Trench 2 + the design outflow rates from the pervious paving from Plots 1-6.

The following table details the total outflow rates from the pervious paving and roadside filter drains.

SuDS Device	M1	M10	M30 + 35%	M100 + 35%	M200 + 35%
Pervious paving	2.0	2.8	3.7	4.3	4.7
Filter Drain 2	7.3	10.1	12.8	14.4	15.4
Totals	9.3	12.9	16.5	18.7	20.1

When compared with the pre-development greenfield run-off rates shown in section 6.1 of this report, we can determine that the current design outflow rates are significantly higher than the pre-development rates. Consequently, we can conclude from these results that additional attenuation and restriction measures are required to reduce the post-development outflow rate to equal to or better than the pre-development rates for each storm event.

6.5 As treatment of roof and driveway water is already provided by the pervious paving driveways, and the majority of roads water run-off receives treatment through the road-side filter drains, it was determined that the further attenuation required to restrict the outflow rates would not also have to provide any treatment. For this reason, cellular attenuation crates have been specified as these provide significantly more storage volume per m² footprint area than a stone filled trench, for example. The void ratio of typical cellular storage crates is 95%, whereas the void ratio for a stone filled trench is between 30 and 35%.

The cellular storage area has therefore been designed to attenuate all flows from both the pervious paving areas, the road-side filter drains, and also from the first 30m of the adoptable road carriageway and the private access driveway, both of which have, up until this point, been excluded from the calculations due to the fact that the road gradients would not allow for these areas to drain to the road-side filter drains located upstream. The cellular attenuation has been designed with a footprint area of 7.5m x 8.0m, with a depth of 1.20m. At 95% void ratio, this provides an overall storage volume of 68.4m³. A further control chamber is located at the downstream end of the cellular storage area, further throttling back the outflow rates from the development site.

Cascade calculations have been run in WinDes Source Control, analysing the outflow rates from the cellular attenuation area, including the flows entering the cells from all upstream areas, including the restricted flows from the pervious paving, the restricted flows from Filter Drain 2, and the unrestricted flows from the first 30m of adoptable road carriageway and the private access driveway.

The following is a summary of the cascade results for the outflow from the cellular attenuation area:

M1= 2.9 I/sM10= 4.0 I/sM30 + 35%= 5.5 I/sM100 + 35%= 6.4 I/sM200 + 35%= 7.0 I/s

Copies of the cellular attenuation cascade results are contained in **Appendix G** of this report.

6.6 Comparing the pre-development greenfield run-off rates (see section 6.1) to the post-development outflow rates from the cellular storage area (see section 6.5, above), it can be determined that the post-development outflow rates are significantly lower than the pre-development rates in each of the analyses storm events. The below table provides a summary of the pre and post development outflow rates.

	M1	M10	M30	M100	M200
Pre-development Greenfield Run-off	3.7	6.3	8.3	10.6	12.2
Rate					
Post-development outflow rate	2.9	4.0	5.5	6.4	7.0
Reduction in flow rate	0.8	2.3	2.8	4.2	5.2

While it would have been feasible to allow for a greater post-development outflow rate to be released through the cellular attenuation control chamber (Mh.S8), it was determined that, for this development, it would be beneficial to reduce the total development outflow rate as much as possible to avoid the receiving watercourse being inundated with the outflow from this site, hence the outflow rates have been reduced to be below the pre-development greenfield run-off rates.

6.7 Determining the hazard posed by the land use activities at a site can be established by using a simple index approach by allocating pollution hazard indices for the proposed land use as outlined in Table 5.1 below.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential Roofs	Very Low	0.2	0.2	0.05
Individual property driveways, residential car parks and housing roads.	Low	0.5	0.4	0.4
Pollution Hazard index	Low	0.5	0.4	0.4

Table 5.1: Pollution hazard Indices for residential land use classifications (CIRIA C753 Table 26.2)

Proposed SuDS Components for Roof & Driveway Water Run-off	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Pervious paving driveways	0.7	0.6	0.7
Total Mitigation Index	0.7	0.7	0.7

Table 5.2: Indicative SuDS mitigation indices for discharge to ground water (CIRIA C753 Table 26.3 & 26.4)

Proposed SuDS Components for Roads Water Run-off	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Filter Drains	0.4	0.4	0.4
Total Mitigation Index	0.4	0.4	0.4

Table 5.2: Indicative SuDS mitigation indices for discharge to ground water (CIRIA C753 Table 26.3 & 26.4)

6.8 To deliver adequate surface water treatment, the selected SuDS components suggested in Table 5.2 should have a total pollution mitigation index (for each contaminant type) that is equal to or exceeds the pollution hazard index specified in Table 5.1.

Total SuDS Mitigation Index > Pollution Hazard Index

6.9 Where the mitigation index of an individual component is insufficient on its own, two components (or more) can be used in series where required. A factor of 0.5 is then used to account for the reduced performance of the secondary or tertiary components associated with the already reduced inflow concentrates. As a result, the existing SuDS components identified in table 5.2 equate to or exceed the land use pollution hazard indices, providing the required level of treatment for a development of this nature.

Refer to Drainage Layout Plan in **Appendix E** this report. Refer to surface water drainage calculations in **Appendix G** of this report.

7. Assessment of Flood Risk

- 7.1 The existing site is 'greenfield' and located above the 8.00mAOD contour line, with a minimum property finished floor level of 8.745m. Access to the development will be from a new adoptable road off Cairston Road, Stromness.
- 7.2 Sources of Flood Risk: Scottish Planning Policy, February 2010 (SPP7) highlights that there are several potential sources of flooding that could impact any site, comprising:

- 7.3 Fluvial (originating from a watercourse), coastal, groundwater, pluvial (surface water run-off), sewers and blocked culverts.
- 7.4 **Groundwater Flooding**: Flooding of this nature is caused by unusually high groundwater levels or flow rates. Due to the gradient of the site and surrounding area it is not anticipated for this site to be affected by groundwater flooding.
- 7.5 **Coastal Flooding**: The site is located approximately 225m inland from the tidal reach of the North Sea, at an elevation of approximately 8.00mAOD, and above. SEPA's current flood maps do not indicate that this site would be at risk from coastal flooding.

Refer to extract of SEPA's Flood Map in **Appendix C** of this report.

7.6 **Fluvial Flooding**: The site lies out with the 0.5% AP (200 year) fluvial flood outline as shown on the SEPA Flood Maps. The Mill Brun is located approximately 200m to the east of the proposed development site, and whilst SEPA's flood maps do show significant flooding of the Mill Burn in the 200yr storm event, the estimated flooding does not have any impact on the proposed development.

Refer to extract of SEPA's Flood Map in **Appendix C** of this report.

7.7 **Pluvial (surface water) Flooding**: Occurs from rainfall which is ponding in localised depressions. There are no areas of pluvial flooding identified within the proposed development area on SEPA's flood maps.

Refer to extract of SEPA's Flood Map in **Appendix C** of this report.

7.8 It should be noted that the installation of the surface water drainage infrastructure and development access road will continually improve the overall site drainage. Any existing network of field drainage will inevitably be cut off by the development, therefore, should it prove necessary, these field drains will be redirected and/ or connected to a new perimeter land drain to intercept any ground water.

- 7.9 Sewers and Blocked Culverts: There are no existing public surface water sewers within close proximity to the site. There is an existing adopted combined sewer within the development boundary which will be receiving some surface water run-off. We are not aware of any historic flooding issues relating to the existing combined sewer network. There are existing culverts out-with the development site, to the southwest. One culvert 450mm and runs along Cairston Road from east to west. The other culvert is 600mm and crosses underneath Cairston Road, heading south towards the Mill Burn before discharging to the sea. The headwalls on both culverts have the potential to block if debris is caught in the trash screens. It is therefore essential that regular inspections and maintenance of the trash screens are undertaken to ensure blockages do not occur or are remedied at the soonest possible time. Due to the proposed finished site levels within the development site, if the existing culverts were to block, it is very unlikely that the propose development site would flood, with any flood water likely to run west along Cairston Road.
- 7.10 Flood Summary: with reference to the extract of SEPA's current flood map for the Cairston Road area in *Appendix C* of this report, there is no anticipated flood risk to the proposed development site from fluvial, pluvial or coastal flooding.
- 7.11 It will be important to manage the installation of new drainage measures including re-directed and/or connection of new perimeter land drains to intercept any ground water.
- 7.12 To this end the development has been designed to ensure that the residual risk from flooding will be low.

8. Future Maintenance

8.1 The main access roads to the development will be offered for adoption by Orkney Islands Council.

8.2 The proposed surface water infrastructure for each property, including rainwater pipework and SuDS components, i.e. pervious paviours, will be maintained by the individual property owners. To ensure that each SuDS component operates optimally, a detailed maintenance regime should be established to ensure regular inspection of the SuDS devices and associated chambers. C+R provides such operation and maintenance guidance in *Appendix H* of this report, detailing the frequency of inspections and the remedial actions to be implemented.

8.3

- 8.4 The surface water infrastructure out-with the plot curtilages, including the surface water pipework, road-side filter drains, and cellular attenuation will be private. A factoring agreement will be set up by the developer to ensure that the surface water system, including the relevant SuDS components, are inspected at regular intervals and, where necessary, remedial works carried out. C+R provides such operation and maintenance guidance in *Appendix H* of this report, detailing the frequency of inspections and the remedial actions to be implemented.
- 8.5 The foul sewerage infrastructure from the plot disconnection chambers to the mainline sewer, and the realigned combined sewer will be put forward for adoption by Scottish Water.

9. Construction Phase

9.1 The measures for controlling surface water run-off will be continually reviewed in line with each stage of construction by the groundwork's contractor, and any influencing factors should generally consider the following measures:

Control:

9.2 The contractor should give consideration, in the main, to surface water run-off during and after topsoil strip, as well as after re-grading of the land during site construction. Stripping of topsoil and vegetation is to be limited, wherever possible, and undertaken just prior to the construction of that area. This is to provide a means

of reducing surface water run-off, to remove silts/fines from the water and to aid natural absorption into the soils.

Interception:

9.3 Any existing network of field drainage that may be cut off by the development, should it prove necessary, will be redirected and / or connected to a new perimeter land drain to intercept any ground water.

Prevention:

- 9.4 The installation of the drains and roadways will follow the earthworks operations continually improving the overall site drainage. It is not recommended to utilise any of the proposed SuDS components as temporary methods of attenuation or treatment of surface water run-off from the development site during construction. However, should the appointed contractor choose to do so, it is essential that these SuDS components are fully rehabilitated or reconstructed at the end of the construction works and before occupation of the properties.
- 9.5 If the construction site area exceeds 4 Hectares, it would require a Construction Site License from SEPA in accordance with Controlled Activities Regulations (CAR). However, the proposed development site only extends to approximately 0.49 Ha, so is exempt from such licensing.

10.Summary & Conclusions

- **10.1** This Drainage Statement has been prepared in support of the proposed development to construct 10 private domestic properties and associated infrastructure on behalf of Orkney Builders.
- 10.2 The existing site characteristics, topography and natural drainage patterns have been reviewed and suitable drainage proposals identified. In developing a suitable, sustainable, and robust drainage scheme for the site current best practice and relevant guidance documents have been referenced and adopted within the proposed designs.

- 10.3 The proposed foul drainage requires the existing adopted combined sewers pipe which traverses the development site to be realigned to suit the locations of the proposed development roads.
- 10.4 The proposed surface water drainage scheme consists of a number of SuDS components to both treat and attenuate the surface water run-off from the development site. Plot roof and driveway water will be treated and attenuated via pervious paving driveways with the outflow restricted to the mainline surface water sewer. The majority of roads water will be treated and attenuated in roadside filter drains, with the outflow from both filter drains restricted. Downstream of the filter drains, a cellular attenuation area is provided, attenuating all run-off from the upstream areas. The outflow from the cellular attenuation is restricted to outflow rates below the pre-development greenfield run-off rates.
- 10.5 The drainage proposals, as set out above, demonstrate that the site is suitable for the proposed development and that a sustainable drainage solution can be implemented in accordance with the relevant guidance documents and publications.

C+R

Development Location Plan

Development Location Plan (Scale 1:2000)

Glenvanna

	$\langle \rangle$	
	/	
		/
		r
	unde box, vole	
	Surface Dox, wate	
	Alle 30, wate	
	1943.40	
	All	
	40 File	
	40 11773.40 1777 1777 1777 1777	
12 W F	rf krf	
1 Pwf BT chd	Andre box, wate	
1 w ft pw BT chd	Arf	
1 pwft BT chd	indee box, wate	
BT chd	oitnoc	
1 PW BT chd ISS Verge	bitmace box, wate	
BT chd	ourrace box, wate	/
BT chd	bitmace box, wate	
BT chd	bitmace box, wate	
BT cho blic tootwoy	bitmace box, wate	
BT chd	bitmoc box, wolle	
BT cho blic footwol	bitmace box, wate	
BT chd	bitmoc box, wolle	
BT cho blic footwoly	bitmace box, wate	
Iss verge	bitmace box, wate	
BT cho ISS Verge	otrace box, wate	
Iss verge	bitmac bax, wate	
BT cho ISS Verge	bitmace box, wate	
BT cho blic footway	bitmac	
ISS Verge	bitmace box, wate	
BT chd	bitmac	
A BT chd	bitmac bax, wate	
BT cho BT cho	bitmac	
BT chd	bitmoc	
BT cho BT cho	bitmac	
BT chd	bitmac bax, wate	
BT cho	bitmac bitmac	
Iss verge	ourrace box, wate	
ISS Verge	bitmoc	
ISS Verge	bitmac	
BT chd	10m 15m 20m	
Om 5m		
Om 5m	10m 15m 20m	

E	Development layout updated to correspond with architects current drawings.	JMA	27/02/24
D	Development layout updated to account for alterations to position of Plot 1.	JMA	17/08/23
С	Development layout updated to correspond with amendments to SuDS maintenance track.	JMA	14/08/23
В	Development layout updated to correspond with architects current drawings.	JMA	11/01/23
A	Development layout updated to correspond with architects current drawings.	JMA	21/12/22
Issue	Revision	Initial	Date

Cameron+Ross

CIVIL + STRUCTURAL ENGINEERING Forbes House | 15 Victoria Street | Aberdeen | AB10 1XB t 01224 642 400 | w cameronross.co.uk Mulberry House | 39-41 Harbour Road | Inverness | IV1 1UF t 01463 570 100 | w cameronross.co.uk Client:

Orkney Builders

Project:

Housing Development Cairston Road North Stromness

Drawing Title:

Location Site Plan

Status:

Planning

Scale:	1:250 @ A1		Date:	08/0	9/22
By:	JMA	Checkec	I: JMA	Approved:	RAG
Dwg. No.					Rev.
210321-000-CAM-DR-C-001				Е	
C+R

138

APPENDIX B

Extract of Scottish Water GIS

140

APPENDIX C

SEPA Flood Map

C+R

142

APPENDIX D

Development Layout Plan

Key:

Application boundary

Plot division line

---- Retaining wall

Existing stone wall retained

Proposed hedging

Proposed roadway

Proposed footpaths

Private gardens

Amenity space

Proposed shrub mix

Proposed Trees

A

 \otimes

ASHP position

Bin stance area

Rotary clothes dryer

EV Charging:

E Indicative in-curtilage EV charging point location

In-Curtilage EV Charging Provision

Provision for up to 7kW Electric Car Charging in accordance with Approved Document P: Electrical safety – dwellings, Electricity at Work Regulations HSR25, BS7671:18th edition (2018) and the IET Code of Practice for EV Charging. External socket device to come complete with isolation switch and be suitable for upgrading in the future to a fast-charge device. External socket device to have a dedicated supply from the consumer unit, be certified for continuous load and suitably earthed. External socket device to be located 1.1m above finished ground level.)

 A
 20.02.24
 FFL'S ADDED.

 REV
 DATE
 DESCRIPTION

LMid DRN

Bracewell Stirling CONSULTING

38 WALKER TERRACE, TILLICOULTRY, FK13 6EF 5 NESS BANK, INVERNESS, IV2 4SF 15 LOCHSIDE STREET, OBAN, PA34 4HP 01259 750301 01463 233760 01631 359054

PROPOSED HOUSING DEVELOPMENT CAIRSTON ROAD NORTH, STROMNESS ORKNEY BUILDERS LTD

STATUS:			
SCALE:	1 : 500	DRAWN:	LM
PAPER SIZE	: A3	DATE:	Feb 2024
DWG No.	REV. A		

C+R

144

APPENDIX E

Drainage Layout Plan

FIGURED DIMENSIONS ONLY TO BE USED

- Invert levels of existing sewer manholes extracted from Scottish Waters GIS data. All invert levels to be checked on site prior to construction.
 Surface water & foul sewers infrastructure to be constructed in accordance with the relevant sections of Scottish Water document, 'Sewers for Scotland, 4th Edition'.
 Construction & maintenance of SuDS devices to comply with the relevant sections of CIRIA C753 'The SuDS Manual'.
- Unreinforced and reinforced concrete pipes & fittings shall comply with the relevant provisions of BS EN 1916 & BS EN 5911-1.
- 5. uPVC pipes, joints & fittings for gravity sewers shall comply with the relevant provisions of BS 4660 and BS EN 1401-1.
- Pre-cast concrete manhole units for manholes, chambers and wet wells shall comply with the relevant provisions of BS EN 1917 & BS 5911-3.
- Pre-cast concrete slabs and cover frame seating rings shall comply with the relevant provisions of BS EN 1917 and BS 5911-3.
- Manhole covers & frames shall comply with the relevant provisions of BS EN 124, BS 7903 and the 'Design Manual for Roads & Bridges: HA/104/09 Geotechnics & Drainage: Chamber Tops & Gully Tops for Road Drainage & Services: Installation & Maintenance'.
- As a Minimum, Class D400 covers shall be used in carriageways of Roads (including pedestrian streets), hard shoulders and parking areas.
- 10. Class B125 covers shall be used in footways, pedestrian areas and comparable locations.
- 11. No planting should occur within 2.0m of the filter trenches to ensure that no root penetration takes place.
- Grasses planted within adoptable roads water swales should be maintained at a length of between 75mm -150mm to ensure performance during regular events (Refer to CIRIA Document, The SuDS Manual, C753, Section 17.10 -Landscape Design & Planting).

LEGEND:

 Surface Water Sewers (New)
 Combined Sewers (New)
 Combined Sewers (Existing) to be diverted
 Proposed SuDS Filter Trench

Pervious block paving driveways. (Treatment and attenuation for driveway and roof water for each plot).

Cellular attenuation area

Н	Surface water drainage design amended to suit the requirements of OIC engineering.	JMA	06/03/24
G	Development layout updated to correspond with architects current drawings.	JMA	27/02/24
F	Drainage layout updated to shown existing property connections connecting to proposed new combined sewers.	JMA	22/08/23
Issue	Revision	Initial	Date

Cameron+Ross

CIVIL + STRUCTURAL ENGINEERING Forbes House | 15 Victoria Street | Aberdeen | AB10 1XB t 01224 642 400 | w cameronross.co.uk Mulberry House | 39-41 Harbour Road | Inverness | IV1 1UF t 01463 570 100 | w cameronross.co.uk

Client:

Orkney Builders

Project:

Housing Development Cairston Road North Stromness

Drawing Title:

Drainage Layout Plan

Status:

APPROVAL

Scale:1:250 @ A1Date:08/09/22By:JMAChecked:JMAApproved:RAG

Dwg. No. Rev 210321-000-CAM-DR-C-400 H

C+R

146

APPENDIX F

Pre & Post Development Greenfield Run-off Calculations

147

Cameron+Ross

CalculationPre & Post Development Site Run-Off CalculationContractHousing Development - Cairston Road North, Stromness

CALCULATION

Sheet No.	4
Contract No.	A/210321
Date	28/06/2022
Designer	JMA

Site Area, Total			489	7 m ²		0.4897 ha 0.5 km ²	(min. 0.5km)
SAAR			105	0 mm	Fror Anr	n Wallingford Vol 3 nual Rainfall Chart	
Soil Type SOIL	(Soil Index)		0.5	5 0			
Flow offsite, QB/	AR rural	=	0.00108 x A	NREA ^{0.89} x S	SAAR ^{1.1}	⁷ x SOIL ^{2.17}	
		=	443.67	l/sec			
Therefore QBAR	R rural / ha	=	8.87	l/sec/ha	4.3	l/sec for this site	

Equivalent 1, 30, 100 and 200 year throttle rates applicable for hydrological growth curve 1 for North Scotland

1 year factor	0.85
10 year factor	1.45
30 year factor	1.90
100 year factor	2.45
200 year factor	2.80

Therefore greenfield limiting discharge rates are:

1 year factor	7.54	l/sec/ha	3.7	l/sec for this site
10 year factor	12.87	l/sec/ha	6.3	l/sec for this site
30 year factor	16.86	l/sec/ha	8.3	l/sec for this site
100 year factor	21.74	l/sec/ha	10.6	l/sec for this site
200 year factor	24.85	l/sec/ha	12.2	l/sec for this site

Post-development Run-off Calculation

Total Impermeable Area =	232	6 m ²	0.2 ha
Hardstanding covers 47.5 % of site			
Allowable 30yr Post-development Run-off =	3.9	l/sec	

C+R

148

APPENDIX G

Surface Water SuDS Calculations M1 to M200 + 35% Results, including Cascade results

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 1 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 19 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min :	Summer	9.087	0.087	0.0	0.4	0.4	0.5	ОК
30	min	Summer	9 105	0 105	0.0	0 4	0 4	0 7	0 K
60	min	Summer	9 118	0 118	0.0	0 4	0.1	0.8	0 K
120	min	Summer	9 119	0 119	0.0	0 4	0.1	0.8	0 K
180	min !	Summer	9 114	0 114	0.0	0 4	0.1	0.8	0 K
240	min :	Summer	9.107	0.107	0.0	0.4	0.4	0.7	0 K
360	min	Summer	9 095	0 095	0.0	0 4	0 4	0.6	0 K
480	min !	Summer	9 085	0 085	0.0	0.4	0.1	0.5	0 K
600	min	Summer	9.077	0.077	0.0	0.3	0.3	0.4	0 K
72.0	min	Summer	9.070	0.070	0.0	0.3	0.3	0.4	0 K
960	min :	Summer	9.059	0.059	0.0	0.3	0.3	0.3	ΟK
1440	min :	Summer	9.046	0.046	0.0	0.2	0.2	0.2	ОК
2160	min :	Summer	9.036	0.036	0.0	0.2	0.2	0.1	ОК
2880	min :	Summer	9.032	0.032	0.0	0.2	0.2	0.1	ОК
4320	min :	Summer	9.027	0.027	0.0	0.1	0.1	0.1	ОК
5760	min :	Summer	9.024	0.024	0.0	0.1	0.1	0.1	ОК
7200	min :	Summer	9.022	0.022	0.0	0.1	0.1	0.0	ОК
8640	min :	Summer	9.021	0.021	0.0	0.1	0.1	0.0	ОК
10080	min :	Summer	9.020	0.020	0.0	0.1	0.1	0.0	ОК
15	min N	Winter	9.097	0.097	0.0	0.4	0.4	0.6	ОК

	Stor	m	Rain	Flo	bded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Vol	ume	Volume	(mins)	
				(m	3)	(m³)		
15	min	Summer	19.000		0.0	0.7	15	
30	min	Summer	13.218		0.0	1.0	24	
60	min	Summer	8.918		0.0	1.5	42	
120	min	Summer	5.920		0.0	2.0	76	
180	min	Summer	4.641		0.0	2.4	108	
240	min	Summer	3.903		0.0	2.7	140	
360	min	Summer	3.055		0.0	3.1	202	
480	min	Summer	2.569		0.0	3.5	264	
600	min	Summer	2.246		0.0	3.9	324	
720	min	Summer	2.013		0.0	4.2	384	
960	min	Summer	1.694		0.0	4.7	502	
1440	min	Summer	1.326		0.0	5.5	738	
2160	min	Summer	1.034		0.0	6.4	1100	
2880	min	Summer	0.866		0.0	7.2	1468	
4320	min	Summer	0.675		0.0	8.4	2176	
5760	min	Summer	0.566		0.0	9.3	2864	
7200	min	Summer	0.494		0.0	10.1	3632	
8640	min	Summer	0.441		0.0	10.8	4376	
10080	min	Summer	0.401		0.0	11.4	5008	
15	min	Winter	19.000		0.0	0.8	15	
		©198	32-2017	XP	Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 1 Perviou	Checked by JMA	Dialitage
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(111)	(111)	(1/5)	(1/5)	(1/5)	(111-)	
30	min W	Vinter	9.117	0.117	0.0	0.4	0.4	0.8	ОК
60	min W	Vinter	9.128	0.128	0.0	0.4	0.4	0.9	ОК
120	min W	Vinter	9.124	0.124	0.0	0.4	0.4	0.8	ΟK
180	min W	Vinter	9.113	0.113	0.0	0.4	0.4	0.8	ΟK
240	min W	Vinter	9.102	0.102	0.0	0.4	0.4	0.7	ОК
360	min W	Vinter	9.084	0.084	0.0	0.3	0.3	0.5	ОК
480	min W	Vinter	9.071	0.071	0.0	0.3	0.3	0.4	ΟK
600	min W	Vinter	9.061	0.061	0.0	0.3	0.3	0.3	ОК
720	min W	Vinter	9.054	0.054	0.0	0.3	0.3	0.3	ОК
960	min W	Vinter	9.044	0.044	0.0	0.2	0.2	0.2	ОК
1440	min W	Vinter	9.034	0.034	0.0	0.2	0.2	0.1	ОК
2160	min W	Vinter	9.029	0.029	0.0	0.1	0.1	0.1	ОК
2880	min W	Vinter	9.026	0.026	0.0	0.1	0.1	0.1	ΟK
4320	min W	Vinter	9.022	0.022	0.0	0.1	0.1	0.0	ОК
5760	min W	Vinter	9.020	0.020	0.0	0.1	0.1	0.0	ОК
7200	min W	Vinter	9.018	0.018	0.0	0.1	0.1	0.0	ОК
8640	min W	Vinter	9.017	0.017	0.0	0.1	0.1	0.0	ΟK
10080	min W	Vinter	9.016	0.016	0.0	0.1	0.1	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	13.218	0.0	1.2	25
60	min	Winter	8.918	0.0	1.7	44
120	min	Winter	5.920	0.0	2.2	80
180	min	Winter	4.641	0.0	2.7	114
240	min	Winter	3.903	0.0	3.0	146
360	min	Winter	3.055	0.0	3.5	210
480	min	Winter	2.569	0.0	4.0	272
600	min	Winter	2.246	0.0	4.4	332
720	min	Winter	2.013	0.0	4.7	390
960	min	Winter	1.694	0.0	5.3	508
1440	min	Winter	1.326	0.0	6.2	726
2160	min	Winter	1.034	0.0	7.2	1064
2880	min	Winter	0.866	0.0	8.1	1436
4320	min	Winter	0.675	0.0	9.4	2184
5760	min	Winter	0.566	0.0	10.5	2896
7200	min	Winter	0.494	0.0	11.4	3576
8640	min	Winter	0.441	0.0	12.2	4416
10080	min	Winter	0.401	0.0	12.8	5016

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	5
Aberdeen	Plot 1 Pervious Paving	L.
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 1 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Recurn Period (years) Region Scotla	ind and Ireland Cv (Winter) 0	. 840
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 1	0800
Summer Storms	Yes Climate Change %	+0
Tir	ne Area Diagram	
Tota	al Area (ha) 0.024	
T	ime (mins) Area	
Fr	om: To: (ha)	
	0 4 0 024	
	0 4 0.024	

©1982-2017 XP Solutions

Cameron & Ross		Page 4						
15 Victoria Street	210321 - Cairston Road North							
Aberdeen	Plot 1 Pervious Paving	L						
AB10 1XB		Micco						
Date 06/03/2024	Designed by JMA							
File 210321 - Plot 1 Perviou	Checked by JMA	Dialitatic						
CADS	Source Control 2017.1.2							
<u>Model Details</u> Storage is Online Cover Level (m) 9.800								
Porous Car Park Structure								
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	4.0						
Membrane Percolation (mm/hr) 1000 Length (m)	7.0						
Max Percolation	(1/s) 7.8 Slope (1:X)	150.0						
Safety	Factor 2.0 Depression Storage (mm)	5						

Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.000 Membrane Depth (m) 0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.000

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	L.
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcaipago
File 210321 - Plot 1 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Half Drain Time : 29 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	9.153	0.153	0.0	0.5	0.5	1.1	ОК
30	min	Summer	9 187	0 187	0.0	0.5	0.5	1 4	0 K
60	min	Summer	9 212	0 212	0.0	0.6	0.6	1 6	0 K
120	min	Summer	9 220	0 220	0.0	0.6	0.0	1 6	0 K
180	min	Summer	9 212	0 212	0.0	0.6	0.0	1 6	0 K
240	min	Summer	9.202	0.202	0.0	0.6	0.6	1.5	0 K
360	min	Summer	9 182	0 182	0.0	0.5	0.5	13	0 K
480	min	Summer	9 163	0 163	0.0	0.5	0.5	1 2	0 K
600	min	Summer	9.147	0.147	0.0	0.5	0.5	1.0	0 K
720	min	Summer	9.134	0.134	0.0	0.5	0.5	0.9	0 K
960	min	Summer	9.113	0.113	0.0	0.4	0.4	0.8	ОК
1440	min	Summer	9.085	0.085	0.0	0.4	0.4	0.5	ОК
2160	min	Summer	9.062	0.062	0.0	0.3	0.3	0.3	ОК
2880	min	Summer	9.049	0.049	0.0	0.2	0.2	0.2	ОК
4320	min	Summer	9.036	0.036	0.0	0.2	0.2	0.1	ОК
5760	min	Summer	9.031	0.031	0.0	0.2	0.2	0.1	ОК
7200	min	Summer	9.028	0.028	0.0	0.1	0.1	0.1	ОК
8640	min	Summer	9.026	0.026	0.0	0.1	0.1	0.1	ОК
10080	min	Summer	9.025	0.025	0.0	0.1	0.1	0.1	ОК
15	min 1	Winter	9.172	0.172	0.0	0.5	0.5	1.2	ОК

	Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	33.317	0.0	1.4	16	
30	min	Summer	23.154	0.0	1.9	26	
60	min	Summer	15.530	0.0	2.7	44	
120	min	Summer	10.149	0.0	3.5	78	
180	min	Summer	7.867	0.0	4.1	112	
240	min	Summer	6.555	0.0	4.6	144	
360	min	Summer	5.058	0.0	5.3	208	
480	min	Summer	4.204	0.0	5.9	270	
600	min	Summer	3.641	0.0	6.4	332	
720	min	Summer	3.236	0.0	6.8	392	
960	min	Summer	2.686	0.0	7.5	512	
1440	min	Summer	2.065	0.0	8.7	752	
2160	min	Summer	1.587	0.0	10.0	1104	
2880	min	Summer	1.317	0.0	11.1	1468	
4320	min	Summer	1.011	0.0	12.7	2200	
5760	min	Summer	0.838	0.0	14.0	2920	
7200	min	Summer	0.725	0.0	15.1	3664	
8640	min	Summer	0.643	0.0	16.0	4304	
10080	min	Summer	0.582	0.0	16.9	4992	
15	min	Winter	33.317	0.0	1.5	16	
		©198	82-2017	XP Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 1 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	5	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min	Winter	9.211	0.211	0.0	0.6	0.6	1.6	ОК
60	min	Winter	9.237	0.237	0.0	0.6	0.6	1.8	ОК
120	min	Winter	9.236	0.236	0.0	0.6	0.6	1.8	ΟK
180	min	Winter	9.220	0.220	0.0	0.6	0.6	1.7	ΟK
240	min	Winter	9.203	0.203	0.0	0.6	0.6	1.5	ΟK
360	min	Winter	9.170	0.170	0.0	0.5	0.5	1.2	ΟK
480	min	Winter	9.144	0.144	0.0	0.5	0.5	1.0	ОК
600	min	Winter	9.124	0.124	0.0	0.4	0.4	0.8	ΟK
720	min	Winter	9.108	0.108	0.0	0.4	0.4	0.7	ОК
960	min	Winter	9.085	0.085	0.0	0.4	0.4	0.5	ΟK
1440	min	Winter	9.059	0.059	0.0	0.3	0.3	0.3	ΟK
2160	min	Winter	9.041	0.041	0.0	0.2	0.2	0.2	ΟK
2880	min	Winter	9.034	0.034	0.0	0.2	0.2	0.1	ОК
4320	min	Winter	9.029	0.029	0.0	0.1	0.1	0.1	ОК
5760	min	Winter	9.025	0.025	0.0	0.1	0.1	0.1	ОК
7200	min	Winter	9.023	0.023	0.0	0.1	0.1	0.0	ΟK
8640	min	Winter	9.022	0.022	0.0	0.1	0.1	0.0	ΟK
10080	min	Winter	9.020	0.020	0.0	0.1	0.1	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	23.154	0.0	2.2	28
60	min	Winter	15.530	0.0	3.0	46
120	min	Winter	10.149	0.0	3.9	84
180	min	Winter	7.867	0.0	4.6	118
240	min	Winter	6.555	0.0	5.1	152
360	min	Winter	5.058	0.0	6.0	218
480	min	Winter	4.204	0.0	6.6	280
600	min	Winter	3.641	0.0	7.2	342
720	min	Winter	3.236	0.0	7.6	404
960	min	Winter	2.686	0.0	8.5	520
1440	min	Winter	2.065	0.0	9.8	754
2160	min	Winter	1.587	0.0	11.3	1108
2880	min	Winter	1.317	0.0	12.4	1444
4320	min	Winter	1.011	0.0	14.3	2200
5760	min	Winter	0.838	0.0	15.8	2904
7200	min	Winter	0.725	0.0	17.0	3656
8640	min	Winter	0.643	0.0	18.0	4408
10080	min	Winter	0.582	0.0	19.0	5080

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	4
AB10 1XB		- m
Date 06/03/2024	Designed by IMA	MICLO
File 210321 - Plot 1 Perviou	Checked by JMA	Drainage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	10 Cv (Summer) 0.	750
Region Scotla	nd and Ireland Cv (Winter) 0.	840
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Summer Storms	Yes Climate Change %	+0
Tin	ne Area Diagram	
Tota	al Area (ha) 0.024	
Ti Fr	me (mins) Area om: To: (ha)	
	0 4 0.024	
©1982-	2017 XP Solutions	

Cameron & Ross		Page 4						
15 Victoria Street	210321 - Cairston Road North							
Aberdeen	Plot 1 Pervious Paving	L						
AB10 1XB		Micco						
Date 06/03/2024	Designed by JMA							
File 210321 - Plot 1 Perviou	Checked by JMA	Diamaye						
CADS	Source Control 2017.1.2							
<u> </u>	Model Details							
Storage is Online Cover Level (m) 9.800								
Porous	Car Park Structure							

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.0
Membrane Percolation (mm/hr)	1000	Length (m)	7.0
Max Percolation (l/s)	7.8	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	9.000	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.000

Cameron & Ross							Page 1				
		0100	21 0	• •	D 1 17	. 1	Tage I				
15 Victoria Stree	t	21032	21 – C	airston	Road Nc	orth					
Aberdeen		Plot	1 Per	vious Pa	ving		Ly				
AB10 1XB							Micco				
Date 06/03/2024		Desig	gned b	y JMA							
File 210321 - Plo	t 1 Perviou	Checl	Ked bv	- JMA			Urainage				
CADS		Cour	$\frac{100}{10}$	+rol 201	7 1 2						
CADS Source Control 2017.1.2											
		C a b b c b c b c b c b c b c c c c c c c c c c		Dela		(
Summa	ry of Results	IOT 30	year	Return 1	Perioa	(+35%)	-				
			4.5								
	Half D	rain Tir	ne : 45	minutes.							
Storm	May May	Ma	v	Max	Max	Max	Status				
Event	Level Depth	Infilt	ation	Control E	Outflow	Volume	beacab				
	(m) (m)	(1/	s)	(1/s)	(1/s)	(m ³)					
			- •	() =)		. ,					
15 min Sur	nmer 9.263 0.263		0.0	0.7	0.7	2.0	O K				
30 min Sur	nmer 9.332 0.332		0.0	0.7	0.7	2.6	O K				
60 min Sur	nmer 9.387 0.387		0.0	0.8	0.8	3.1	0 K				
120 min Sur 100 min Sur	nmer 9.411 0.411		0.0	0.8	0.8	3.3	OK				
180 min Sur 240 min Sur	mer 9.407 0.407		0.0	0.8	0.8	3.2	OK				
360 min Sur	mer 9.394 0.394		0.0	0.8	0.0	2.8	O K				
480 min Sur	nmer 9.332 0.332		0.0	0.7	0.7	2.6	O K				
600 min Sur	nmer 9.304 0.304		0.0	0.7	0.7	2.4	0 K				
720 min Sur	nmer 9.280 0.280		0.0	0.7	0.7	2.2	ОК				
960 min Sur	nmer 9.239 0.239		0.0	0.6	0.6	1.8	O K				
1440 min Sur	mmer 9.183 0.183		0.0	0.5	0.5	1.3	O K				
2160 min Sur	nmer 9.132 0.132		0.0	0.5	0.5	0.9	O K				
2880 min Sur	nmer 9.102 0.102		0.0	0.4	0.4	0.7	O K				
4320 min Sur	nmer 9.070 0.070		0.0	0.3	0.3	0.4	OK				
5760 min Sur 7200 min Sur	mer 9.053 0.053		0.0	0.3	0.3	0.2	O K				
8640 min Sur	111101 9.043 0.043 mmer 9.036 0.036		0.0	0.2	0.2	0.2	0 K 0 K				
10080 min Sur	nmer 9.033 0.033		0.0	0.2	0.2	0.1	O K				
15 min Win	nter 9.296 0.296		0.0	0.7	0.7	2.3	0 K				
	Storm	Rain	Flooded	d Discharge	e Time-P	eak					
	Event	(mm/hr)	Volume	Volume	(mins	5)					
			(m³)	(m ³)	•						
	15 min Summer	56.548	0.0) 2.	4	16					
	30 min Summer	39.673	0.0	3.	4	29					
	00 min Summer	∠6./45 17 205	0.0	y 4.	/ 1	46 80					
	180 min Summer	13 417	0.0	יס י. דר (⊥ 1	00 114					
	240 min Summer	11.137	0.0) 7	- 9	148					
					-						

						• •
				(m³)	(m³)	
15	min	Summer	56.548	0.0	2.4	16
30	min	Summer	39.673	0.0	3.4	29
60	min	Summer	26.745	0.0	4.7	46
120	min	Summer	17.385	0.0	6.1	80
180	min	Summer	13.417	0.0	7.1	114
240	min	Summer	11.137	0.0	7.9	148
360	min	Summer	8.542	0.0	9.1	214
480	min	Summer	7.068	0.0	10.0	278
600	min	Summer	6.098	0.0	10.8	340
720	min	Summer	5.403	0.0	11.5	402
960	min	Summer	4.463	0.0	12.7	522
1440	min	Summer	3.406	0.0	14.5	764
2160	min	Summer	2.598	0.0	16.6	1124
2880	min	Summer	2.144	0.0	18.2	1472
4320	min	Summer	1.634	0.0	20.8	2204
5760	min	Summer	1.346	0.0	22.8	2936
7200	min	Summer	1.158	0.0	24.5	3664
8640	min	Summer	1.024	0.0	25.9	4320
10080	min	Summer	0.923	0.0	27.2	4976
15	min	Winter	56.548	0.0	2.7	17
		©198	32 - 2017	XP Solut	tions	

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 1 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+35%)

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
30	min N	Winter	9.378	0.378	0.0	0.8	0.8	3.0	ОК
60	min N	Winter	9.436	0.436	0.0	0.8	0.8	3.5	ОК
120	min N	Winter	9.454	0.454	0.0	0.9	0.9	3.6	ОК
180	min N	Winter	9.437	0.437	0.0	0.9	0.9	3.5	ОК
240	min N	Winter	9.412	0.412	0.0	0.8	0.8	3.3	ОК
360	min N	Winter	9.359	0.359	0.0	0.8	0.8	2.8	ΟK
480	min N	Winter	9.313	0.313	0.0	0.7	0.7	2.4	ΟK
600	min N	Winter	9.274	0.274	0.0	0.7	0.7	2.1	ОК
720	min N	Winter	9.242	0.242	0.0	0.6	0.6	1.8	ОК
960	min N	Winter	9.193	0.193	0.0	0.6	0.6	1.4	ОК
1440	min N	Winter	9.133	0.133	0.0	0.5	0.5	0.9	ОК
2160	min N	Winter	9.088	0.088	0.0	0.4	0.4	0.5	ОК
2880	min N	Winter	9.065	0.065	0.0	0.3	0.3	0.4	ОК
4320	min N	Winter	9.044	0.044	0.0	0.2	0.2	0.2	ΟK
5760	min N	Winter	9.035	0.035	0.0	0.2	0.2	0.1	ОК
7200	min N	Winter	9.031	0.031	0.0	0.2	0.2	0.1	ОК
8640	min N	Winter	9.029	0.029	0.0	0.1	0.1	0.1	ΟK
10080	min N	Winter	9.027	0.027	0.0	0.1	0.1	0.1	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0		177 / to a	20 (72	0.0	2 0	20
30	min	winter	39.6/3	0.0	3.9	30
60	mın	Winter	26./45	0.0	5.2	48
120	min	Winter	17.385	0.0	6.9	86
180	min	Winter	13.417	0.0	8.0	124
240	min	Winter	11.137	0.0	8.8	158
360	min	Winter	8.542	0.0	10.2	226
480	min	Winter	7.068	0.0	11.2	290
600	min	Winter	6.098	0.0	12.1	354
720	min	Winter	5.403	0.0	12.9	416
960	min	Winter	4.463	0.0	14.2	538
1440	min	Winter	3.406	0.0	16.3	778
2160	min	Winter	2.598	0.0	18.6	1124
2880	min	Winter	2.144	0.0	20.4	1472
4320	min	Winter	1.634	0.0	23.3	2180
5760	min	Winter	1.346	0.0	25.6	2904
7200	min	Winter	1.158	0.0	27.5	3664
8640	min	Winter	1.024	0.0	29.1	4400
10080	min	Winter	0.923	0.0	30.5	5000

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	4
AB10 1XB		m
Date 06/03/2024	Designed by JMA	MICIO
File 210321 - Plot 1 Perviou	Checked by JMA	Urainage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	30 Cv (Summer) 0.	750
Region Scotla	nd and Ireland Cv (Winter) 0.	840
MS-60 (mm) Ratio B	0 250 Longest Storm (mins)	15
Summer Storms	Yes Climate Change %	+35
Tin	ne Area Diagram	
	al Area (ba) 0.024	
1018	AI IICU (IIU) 0.027	
	me (mins) Area	
Fr	om: TO: (ha)	
	0 4 0.024	
	0017 VD 0 1 · · ·	
©1982-	-201/ XP Solutions	

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	Le
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 1 Perviou	Checked by JMA	Dialiacje
CADS	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 9.800

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.0
Membrane Percolation (mm/hr)	1000	Length (m)	7.0
Max Percolation (l/s)	7.8	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	9.000	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.000

Cameron & R	055							Page	1		
15 Victoria	Street		2103	221 - 0	airston	Poad No	rth	2 4 9 0	-		
15 VICCOIId	DUICCU		Dlot	-1 Dor	wiene De	noad ne	/1 011	4			
									7 m		
ARIO IXR									n l		
Date 06/03/2024 Designed by JMA									nano		
File 210321	- Plot 1	Perviou	. Chec	cked by	JMA			Diali	luye		
CADS			Soui	cce Con	trol 201	7.1.2					
)										
		Half	Drain T:	ime : 54	minutes.						
	Storm	May May	м	- v	Maw	Max	Maw	Status			
	Event	Level Depth	M Tnfilt	an ration	Control E	Outflow	Volume	Status			
	lvenc	(m) (m)	(1	/s)	(1/s)	(1/s)	(m ³)				
			•								
15	min Summer	9.341 0.341	-	0.0	0.7	0.7	2.7	ΟK			
30	min Summer	9.441 0.441	_	0.0	0.9	0.9	3.5	ОК			
60	min Summer	9.520 0.520)	0.0	0.9	0.9	4.2	ОК			
120	min Summer	9.558 0.558	-	0.0	1.0	1.0	4.5	OK			
180	min Summer	9.555 0.555)	0.0	1.0	1.0	4.5	OK			
240	min Summer	9.540 0.540)	0.0	0.9	0.9	4.3	0 K			
180	min Summor	9.300 0.300)	0.0	0.9	0.9	4.0	0 K			
400	min Summer	9 121 0 121	1	0.0	0.9	0.9	3.7	0 K			
720	min Summer	9 391 0 391	I	0.0	0.0	0.0	3.1	0 K			
960	min Summer	9.336 0.336	5	0.0	0.7	0.7	2.6	0 K			
1440	min Summer	9.257 0.25	7	0.0	0.6	0.6	2.0	0 K			
2160	min Summer	9.185 0.185	5	0.0	0.5	0.5	1.4	ΟK			
2880	min Summer	9.142 0.142	2	0.0	0.5	0.5	1.0	ОК			
4320	min Summer	9.095 0.095	5	0.0	0.4	0.4	0.6	ОК			
5760	min Summer	9.070 0.070)	0.0	0.3	0.3	0.4	ОК			
7200	min Summer	9.056 0.056	5	0.0	0.3	0.3	0.3	ОК			
8640	min Summer	9.046 0.046	5	0.0	0.2	0.2	0.2	ΟK			
10080	min Summer	9.040 0.040)	0.0	0.2	0.2	0.1	ΟK			
15	min Winter	9.385 0.385	5	0.0	0.8	0.8	3.0	ΟK			
		Storm	Rain	Flooded	d Discharg	e Time-P	eak				
		Event	(mm/hr)	Volume	Volume	(mins	3)				
				(m³)	(m³)						
	15	min Summor	72 673	0 () 3	1	17				
	30	min Summer	51 518	0.0) 4	5	30				
	50 60	min Summer	34.923	0.0) 6.	1	48				
	120	min Summer	22.569	0.0	8.	0	82				
	180	min Summer	17.334	0.0) 9.	2	116				
	240	min Summer	14.329	0.0	10.	2	150				
	360	min Summer	10.919	0.0) 11.	6	216				
	480	min Summer	8.989	0.0	12.	8	282				
	600	min Summer	7.724	0.0	13.	7	344				
	720	min Summer	6.821	0.0) 14.	6	406				
	960	min Summer	5.602	0.0	15.	9	530				

1440 min Summer

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

15 min Winter

10080 min Summer

4.241

3.209

2.633

1.989

1.628

1.394

1.227

1.101

72.673

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2017 XP Solutions

18.1

20.5

22.4

25.4

27.7

29.5

31.2

32.6

3.5

766

1128

1496

2204

2936

3672

4360

5120

17

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 1 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+35%)

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event	2	(m)	Depth (m)	(1/s)	(1/s)	2 Outilow	(m ³)	
			(111)	(111)	(1/3/	(1/3)	(1/3/	(
30	min 1	Winter	9.502	0.502	0.0	0.9	0.9	4.0	ОК
60	min M	Winter	9.589	0.589	0.0	1.0	1.0	4.7	ΟK
120	min 1	Winter	9.621	0.621	0.0	1.0	1.0	5.0	ΟK
180	min 1	Winter	9.605	0.605	0.0	1.0	1.0	4.9	ΟK
240	min 1	Winter	9.574	0.574	0.0	1.0	1.0	4.6	ОК
360	min N	Winter	9.507	0.507	0.0	0.9	0.9	4.1	ΟK
480	min N	Winter	9.446	0.446	0.0	0.9	0.9	3.5	ΟK
600	min N	Winter	9.393	0.393	0.0	0.8	0.8	3.1	ΟK
720	min N	Winter	9.349	0.349	0.0	0.8	0.8	2.7	ΟK
960	min N	Winter	9.280	0.280	0.0	0.7	0.7	2.2	ΟK
1440	min M	Winter	9.192	0.192	0.0	0.6	0.6	1.4	ΟK
2160	min M	Winter	9.125	0.125	0.0	0.4	0.4	0.9	ΟK
2880	min M	Winter	9.091	0.091	0.0	0.4	0.4	0.6	ΟK
4320	min M	Winter	9.058	0.058	0.0	0.3	0.3	0.3	ΟK
5760	min M	Winter	9.044	0.044	0.0	0.2	0.2	0.2	ΟK
7200	min M	Winter	9.036	0.036	0.0	0.2	0.2	0.1	ΟK
8640	min M	Winter	9.033	0.033	0.0	0.2	0.2	0.1	ΟK
10080	min N	Winter	9.030	0.030	0.0	0.2	0.2	0.1	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	51.518	0.0	5.1	30
60	min	Winter	34.923	0.0	6.9	50
120	min	Winter	22.569	0.0	9.0	88
180	min	Winter	17.334	0.0	10.3	126
240	min	Winter	14.329	0.0	11.4	160
360	min	Winter	10.919	0.0	13.0	230
480	min	Winter	8.989	0.0	14.3	296
600	min	Winter	7.724	0.0	15.4	360
720	min	Winter	6.821	0.0	16.3	422
960	min	Winter	5.602	0.0	17.9	546
1440	min	Winter	4.241	0.0	20.3	780
2160	min	Winter	3.209	0.0	23.0	1144
2880	min	Winter	2.633	0.0	25.2	1496
4320	min	Winter	1.989	0.0	28.5	2204
5760	min	Winter	1.628	0.0	31.0	2928
7200	min	Winter	1.394	0.0	33.2	3664
8640	min	Winter	1.227	0.0	35.0	4384
10080	min	Winter	1.101	0.0	36.6	4960

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	Y
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 1 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	
Ra	infall Details	

	Rainfall Model			FSR	Wi	inte	r Storms	Yes
Return	Period (years)			100		Cv	(Summer)	0.750
	Region	Scotland	and	Ireland		Cv	(Winter)	0.840
	M5-60 (mm)			13.000	Shortest S	Stor	m (mins)	15
	Ratio R			0.250	Longest S	Stor	m (mins)	10080
	Summer Storms			Yes	Clima	ate (Change 🖇	+35

Time Area Diagram

Total Area (ha) 0.024

Time	(mins)	Area
From:	To:	(ha)

0 4 0.024

©1982-2017 XP Solutions

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 1 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Storage is On Porous	Model Details nline Cover Level (m) 9.800 Car Park Structure	
<u></u>	Cal Faix Structure	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	4.0
Membrane Percolation (mm/hr) 1000 Length (m)	7.0
Max Percolation	(1/s) 7.8 Slope (1:X)	150.0
Safoty	Factor 2 0 Depression Storage (mm)	5

Safety Factor2.0 Depression Storage (mm)5Porosity0.30Evaporation (mm/day)3Invert Level (m)9.000Membrane Depth (m)0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.000

Cameron & R	loss							Page 1	
15 Victoria	Street		2103	321 - C	airston H	Road No	rth	0	
Aberdeen			Plot	: 1 Per	vious Pav	ving		4	
AB10 1XB								Micro	m
Date 06/03/	2024		Desi	lgned b	y JMA				
File 210321	- Plot 1	Perviou.	Cheo	cked by	JMA			Uraina	ige
CADS			Soui	ce Con	trol 201	7.1.2			
	Summary o	of Result	s for 2	00 year	Return	Period	(+35%)	
		Half	E Drain T:	ime : 59	minutes.				
	Storm	Max Ma	x M	ax	Max	Max	Max	Status	
	Event	Level Dep	th Infilt	ration	Control S	Outflow	Volume		
		(m) (m	ı) (l	/s)	(1/s)	(1/s)	(m³)		
15	i min Summer	9.397 0.3	97	0.0	0.8	0.8	3.1	ОК	
30) min Summer	9.519 0.5	19	0.0	0.9	0.9	4.2	0 K	
60) min Summer	9.617 0.6	17	0.0	1.0	1.0	5.0	ОК	
120) min Summer	9.664 0.6	64	0.0	1.1	1.1	5.4	O K	
180) min Summer	9.664 0.6	64	0.0	1.1	1.1	5.4	ΟK	
240) min Summer	9.647 0.6	547	0.0	1.0	1.0	5.2	O K	
360) min Summer	9.602 0.6	502	0.0	1.0	1.0	4.9	0 K	
480) min Summer	9.555 0.5	55	0.0	1.0	1.0	4.5	ΟK	
600) min Summer	9.512 0.5	12	0.0	0.9	0.9	4.1	ОК	
720) min Summer	9.473 0.4	73	0.0	0.9	0.9	3.8	ОК	
960) min Summer	9.408 0.4	.08	0.0	0.8	0.8	3.2	OK	
2160) min Summer	9.313 0.3	26	0.0	0.7	0.7	2.4	OK	
2880) min Summer	9.220 0.2	73	0.0	0.5	0.0	1 3	0 K	
4320) min Summer	9.115 0.1	15	0.0	0.4	0.4	0.8	0 K	
5760) min Summer	9.084 0.0	84	0.0	0.3	0.3	0.5	ОК	
7200) min Summer	9.066 0.0	66	0.0	0.3	0.3	0.4	ОК	
8640) min Summer	9.054 0.0	54	0.0	0.3	0.3	0.3	ОК	
10080) min Summer	9.046 0.0	46	0.0	0.2	0.2	0.2	O K	
15	i min Winter	9.447 0.4	47	0.0	0.9	0.9	3.6	0 K	
		Storm	Rain	Flooded	l Discharge	e Time-Pe	eak		
		Event	(mm/hr)	Volume	Volume	(mins)		
				(m³)	(m³)				
	15	min Summer	r 83.965	0.0	3.6	5	17		
	30	min Summer	r 59.880	0.0	5.2	2	30		
	60	min Summer	r 40.721	0.0	7.2	2	48		
	120	min Summer	r 26.227	0.0	9.3	3	82		
	180	min Summer	r 20.088	0.0	10.7	7 -	118		
	240	min Summer	r 16.566	0.0	11.8	3	152		
	360	min Summer	r 12.577	0.0	13.4	1 2	218		
	480	min Summer	r 10.324	0.0	14.7	7 2	284		
	600	min Summer	r 8.850	0.0	15.8	3	346		
	720	min Summer	r /.800	0.0	16.7	/ 4 > ·	41U 520		
	96U 1440	min Summer	с 6.386 r Л 211	0.0	18.2 1 20.4	2 3 5 7	53U 778		
	1110			0.0	20.0	, ,	, , 0		

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

15 min Winter

3.624

2.964

2.228

1.817

1.550

1.361

1.219

83.965

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2017 XP Solutions

23.2

25.3

28.5

30.9

32.9

34.6

36.1

4.1

1128

1496

2204

2936

3672 4400

5136

17

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 1 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 200 year Return Period (+35%)

	Storm Event	n 2	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min M	Winter	9.590	0.590	0.0	1.0	1.0	4.8	ОК
60	min 1	Winter	9.699	0.699	0.0	1.1	1.1	5.7	ОК
120	min 1	Winter	9.743	0.743	0.0	1.1	1.1	6.0	ΟK
180	min 1	Winter	9.728	0.728	0.0	1.1	1.1	5.9	ОК
240	min 1	Winter	9.694	0.694	0.0	1.1	1.1	5.6	ΟK
360	min 1	Winter	9.617	0.617	0.0	1.0	1.0	5.0	ОК
480	min N	Winter	9.545	0.545	0.0	1.0	1.0	4.4	ΟK
600	min N	Winter	9.483	0.483	0.0	0.9	0.9	3.9	ΟK
720	min N	Winter	9.430	0.430	0.0	0.8	0.8	3.4	ΟK
960	min N	Winter	9.346	0.346	0.0	0.8	0.8	2.7	ОК
1440	min M	Winter	9.239	0.239	0.0	0.6	0.6	1.8	ΟK
2160	min M	Winter	9.155	0.155	0.0	0.5	0.5	1.1	ΟK
2880	min M	Winter	9.111	0.111	0.0	0.4	0.4	0.7	ΟK
4320	min M	Winter	9.070	0.070	0.0	0.3	0.3	0.4	ΟK
5760	min M	Winter	9.051	0.051	0.0	0.3	0.3	0.2	ΟK
7200	min M	Winter	9.041	0.041	0.0	0.2	0.2	0.1	ΟK
8640	min M	Winter	9.035	0.035	0.0	0.2	0.2	0.1	ΟK
10080	min N	Winter	9.032	0.032	0.0	0.2	0.2	0.1	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	59 880	0 0	5 9	30
60	min	Winter	40 721	0.0	8 1	50
120	min	Winter	26 227	0.0	10 4	88
180	min	Winter	20.088	0.0	12.0	126
240	min	Winter	16.566	0.0	13.2	162
360	min	Winter	12.577	0.0	15.1	232
480	min	Winter	10.324	0.0	16.5	298
600	min	Winter	8.850	0.0	17.7	362
720	min	Winter	7.800	0.0	18.7	426
960	min	Winter	6.386	0.0	20.4	550
1440	min	Winter	4.811	0.0	23.1	792
2160	min	Winter	3.624	0.0	26.0	1144
2880	min	Winter	2.964	0.0	28.4	1500
4320	min	Winter	2.228	0.0	31.9	2204
5760	min	Winter	1.817	0.0	34.7	2936
7200	min	Winter	1.550	0.0	36.9	3616
8640	min	Winter	1.361	0.0	38.9	4408
10080	min	Winter	1.219	0.0	40.6	4960

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 1 Pervious Paving	L.
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 1 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	1
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	200 Cv (Summer) 0	.750
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 1	0080
Summer Storms	Yes Climate Change %	+35
mia	no Area Diagram	
111	ne Area Diagram	
Tota	al Area (ha) 0.024	
T	ime (mins) Area	
Fr	rom: To: (ha)	
	0 4 0.024	

Cameron & Ross		Page 4			
15 Victoria Street	210321 - Cairston Road North				
Aberdeen	Plot 1 Pervious Paving	L			
AB10 1XB		Micco			
Date 06/03/2024	Designed by JMA				
File 210321 - Plot 1 Perviou	Checked by JMA	Diamaye			
CADS	Source Control 2017.1.2				
Model Details					
Storage is Online Cover Level (m) 9.800					
Porous Car Park Structure					
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	4.0			

nfiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.0
Membrane Percolation (mm/hr)	1000	Length (m)	7.0
Max Percolation (1/s)	7.8	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	9.000	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.000

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 2 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 16 minutes.

	Storm	n	Max	Max	Max	Max	Max	Max	Status
	Event	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(1/s)	(m³)	
1 5		C	7 0 0 5	0 075	0.0	0.2	0.2	0.2	0 17
15	101 III	Summer	7.825	0.075	0.0	0.3	0.3	0.3	OK
30	min	Summer	7.840	0.090	0.0	0.4	0.4	0.4	OK
60	min	Summer	7.848	0.098	0.0	0.4	0.4	0.5	ОК
120	min	Summer	7.844	0.094	0.0	0.4	0.4	0.5	ΟK
180	min	Summer	7.837	0.087	0.0	0.4	0.4	0.4	ОК
240	min	Summer	7.830	0.080	0.0	0.3	0.3	0.4	ΟK
360	min	Summer	7.818	0.068	0.0	0.3	0.3	0.3	ΟK
480	min	Summer	7.809	0.059	0.0	0.3	0.3	0.2	ОК
600	min	Summer	7.803	0.053	0.0	0.3	0.3	0.2	ОК
720	min	Summer	7.798	0.048	0.0	0.2	0.2	0.2	ОК
960	min	Summer	7.790	0.040	0.0	0.2	0.2	0.1	ΟK
1440	min	Summer	7.783	0.033	0.0	0.2	0.2	0.1	ОК
2160	min	Summer	7.778	0.028	0.0	0.1	0.1	0.1	ОК
2880	min	Summer	7.775	0.025	0.0	0.1	0.1	0.1	ОК
4320	min	Summer	7.772	0.022	0.0	0.1	0.1	0.0	ΟK
5760	min	Summer	7.770	0.020	0.0	0.1	0.1	0.0	ОК
7200	min	Summer	7.768	0.018	0.0	0.1	0.1	0.0	ОК
8640	min	Summer	7.767	0.017	0.0	0.1	0.1	0.0	ОК
10080	min	Summer	7.765	0.015	0.0	0.1	0.1	0.0	ОК
15	min	Winter	7.834	0.084	0.0	0.3	0.3	0.4	ΟK

	Stor	m	Rain	Floo	oded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Vol	ume	Volume	(mins)	
				(m	3)	(m³)		
15	min	Summer	19.000		0.0	0.5	14	
30	min	Summer	13.218		0.0	0.7	23	
60	min	Summer	8.918		0.0	1.0	40	
120	min	Summer	5.920		0.0	1.4	72	
180	min	Summer	4.641		0.0	1.7	104	
240	min	Summer	3.903		0.0	1.9	136	
360	min	Summer	3.055		0.0	2.2	196	
480	min	Summer	2.569		0.0	2.5	256	
600	min	Summer	2.246		0.0	2.7	316	
720	min	Summer	2.013		0.0	2.9	376	
960	min	Summer	1.694		0.0	3.3	494	
1440	min	Summer	1.326		0.0	3.9	736	
2160	min	Summer	1.034		0.0	4.5	1100	
2880	min	Summer	0.866		0.0	5.1	1468	
4320	min	Summer	0.675		0.0	5.9	2176	
5760	min	Summer	0.566		0.0	6.6	2848	
7200	min	Summer	0.494		0.0	7.1	3552	
8640	min	Summer	0.441		0.0	7.6	4296	
10080	min	Summer	0.401		0.0	8.0	5136	
15	min	Winter	19.000		0.0	0.6	15	
		©198	32-2017	ХP	Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desipado
File 210321 - Plot 2 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
30	min W	Vinter	7.849	0.099	0.0	0.4	0.4	0.5	ОК
60	min W	Vinter	7.854	0.104	0.0	0.4	0.4	0.5	ОК
120	min W	Vinter	7.844	0.094	0.0	0.4	0.4	0.5	ОК
180	min W	Vinter	7.831	0.081	0.0	0.3	0.3	0.4	ОК
240	min W	Vinter	7.821	0.071	0.0	0.3	0.3	0.3	ОК
360	min W	Vinter	7.806	0.056	0.0	0.3	0.3	0.2	ОК
480	min W	Vinter	7.796	0.046	0.0	0.2	0.2	0.2	ОК
600	min W	Vinter	7.790	0.040	0.0	0.2	0.2	0.1	ОК
720	min W	Vinter	7.786	0.036	0.0	0.2	0.2	0.1	ОК
960	min W	Vinter	7.782	0.032	0.0	0.2	0.2	0.1	ОК
1440	min W	Vinter	7.777	0.027	0.0	0.1	0.1	0.1	ОК
2160	min W	Vinter	7.773	0.023	0.0	0.1	0.1	0.0	ОК
2880	min W	Vinter	7.771	0.021	0.0	0.1	0.1	0.0	ΟK
4320	min W	Vinter	7.768	0.018	0.0	0.1	0.1	0.0	ОК
5760	min W	Vinter	7.766	0.016	0.0	0.1	0.1	0.0	ΟK
7200	min W	Vinter	7.764	0.014	0.0	0.0	0.0	0.0	ΟK
8640	min W	Vinter	7.764	0.014	0.0	0.0	0.0	0.0	ΟK
10080	min W	Vinter	7.763	0.013	0.0	0.0	0.0	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	13.218	0.0	0.8	24
60	min	Winter	8.918	0.0	1.2	42
120	min	Winter	5.920	0.0	1.6	76
180	min	Winter	4.641	0.0	1.9	110
240	min	Winter	3.903	0.0	2.1	140
360	min	Winter	3.055	0.0	2.5	202
480	min	Winter	2.569	0.0	2.8	260
600	min	Winter	2.246	0.0	3.1	320
720	min	Winter	2.013	0.0	3.3	370
960	min	Winter	1.694	0.0	3.7	490
1440	min	Winter	1.326	0.0	4.4	734
2160	min	Winter	1.034	0.0	5.1	1096
2880	min	Winter	0.866	0.0	5.7	1468
4320	min	Winter	0.675	0.0	6.6	2140
5760	min	Winter	0.566	0.0	7.4	2928
7200	min	Winter	0.494	0.0	8.0	3672
8640	min	Winter	0.441	0.0	8.6	4280
10080	min	Winter	0.401	0.0	9.1	4984

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	Ly
AB10 1XB		Mirro
Date 06/03/2024	Designed by JMA	Drainago
File 210321 - Plot 2 Perviou	Checked by JMA	
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms 1 Cv (Summer) and and Ireland Cv (Winter) 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) Yes Climate Change %	Yes 0.750 0.840 15 10080 +0
Tir	me Area Diagram	
Tot	al Area (ha) 0.017	
T: Fr	ime (mins) Area :om: To: (ha)	
	0 4 0.017	

©1982-2017 XP Solutions

Cameron & Ross			Page 4
15 Victoria Street	210321 - Ca	irston Road North	
Aberdeen	Plot 2 Perv	ious Paving.	4
AB10 1XB			Micco
Date 06/03/2024	Designed by	JMA	
File 210321 - Plot 2 Perviou	Checked by	JMA	Diamaye
CADS	Source Cont	rol 2017.1.2	_
<u><u>1</u></u>	Model Detail:	5	
Storage is O	nline Cover Les	rel (m) 8 550	
Storage is of	TITUE COVEL DE	Ver (m) 0.550	
Porous	Car Park St	ructure	
Infiltration Coefficient Base	(m/hr) 0.00000	Width (m)	3.5
Membrane Percolation (mm/hr) 1000	Length (m)	6.0
Max Percolation	(l/s) 5.8	Slope (1:X)	150.0
Safety	Factor 2.0	Depression Storage (mm)	5
Po	rosity 0.30	Evaporation (mm/day)	3
Invert Lev	el (m) 7.750	Membrane Depth (m)	0
Orific	ce Outflow Co	ontrol	
Diameter (m) 0.025 Discharge	e Coefficient (0.600 Invert Level (m) 7.	.750

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 2 Perviou	Checked by JMA	Dialitage
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Half Drain Time : 24 minutes.

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(l/s)	(m³)	
1 5		C	7 001	0 1 2 4	0.0	0 5	0 5	0 7	0 17
10	1011 i	Summer	7.004	0.154	0.0	0.5	0.5	0.7	OK
30	min :	Summer	7.912	0.162	0.0	0.5	0.5	0.9	OK
60	min :	Summer	7.929	0.179	0.0	0.5	0.5	1.0	ОК
120	min :	Summer	7.926	0.176	0.0	0.5	0.5	1.0	ΟK
180	min :	Summer	7.915	0.165	0.0	0.5	0.5	0.9	ΟK
240	min :	Summer	7.902	0.152	0.0	0.5	0.5	0.8	ΟK
360	min :	Summer	7.881	0.131	0.0	0.4	0.4	0.7	ОК
480	min :	Summer	7.864	0.114	0.0	0.4	0.4	0.6	ОК
600	min :	Summer	7.850	0.100	0.0	0.4	0.4	0.5	ОК
720	min :	Summer	7.840	0.090	0.0	0.4	0.4	0.4	ОК
960	min :	Summer	7.823	0.073	0.0	0.3	0.3	0.3	ОК
1440	min :	Summer	7.804	0.054	0.0	0.3	0.3	0.2	ΟK
2160	min :	Summer	7.790	0.040	0.0	0.2	0.2	0.1	ОК
2880	min :	Summer	7.784	0.034	0.0	0.2	0.2	0.1	ОК
4320	min :	Summer	7.778	0.028	0.0	0.1	0.1	0.1	ОК
5760	min :	Summer	7.775	0.025	0.0	0.1	0.1	0.0	ОК
7200	min :	Summer	7.773	0.023	0.0	0.1	0.1	0.0	ОК
8640	min :	Summer	7.771	0.021	0.0	0.1	0.1	0.0	ОК
10080	min :	Summer	7.770	0.020	0.0	0.1	0.1	0.0	ОК
15	min N	Winter	7.900	0.150	0.0	0.5	0.5	0.8	ΟK
1440 2160 2880 4320 5760 7200 8640 10080 15	min 3 min 3 min 3 min 3 min 3 min 3 min 3 min 3	Summer Summer Summer Summer Summer Summer Summer Winter	7.804 7.790 7.784 7.778 7.775 7.773 7.771 7.770 7.900	0.054 0.040 0.034 0.028 0.025 0.023 0.021 0.020 0.150	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.5	0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.5	0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.8	0 K 0 K 0 K 0 K 0 K 0 K 0 K

Storm			Rain	Floode	d Discharge	Time-Peak	
Event			(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	33.317	0.	0 1.0	15	
30	min	Summer	23.154	0.	0 1.4	24	
60	min	Summer	15.530	0.	0 1.9	42	
120	min	Summer	10.149	0.	2.5	76	
180	min	Summer	7.867	0.	2.9	108	
240	min	Summer	6.555	0.	3.2	140	
360	min	Summer	5.058	0.	3.7	202	
480	min	Summer	4.204	0.	0 4.2	262	
600	min	Summer	3.641	0.	O 4.5	322	
720	min	Summer	3.236	0.	J 4.8	384	
960	min	Summer	2.686	0.	5.3	502	
1440	min	Summer	2.065	0.	6.2	738	
2160	min	Summer	1.587	0.	7.1	1100	
2880	min	Summer	1.317	0.	7.8	1468	
4320	min	Summer	1.011	0.	9.0	2180	
5760	min	Summer	0.838	0.	9.9	2904	
7200	min	Summer	0.725	0.	0 10.7	3552	
8640	min	Summer	0.643	0.) 11.3	4264	
10080	min	Summer	0.582	0.	0 11.9	5056	
15	min	Winter	33.317	0.	0 1.1	15	
		©198	32-2017	XP So	lutions		
Cameron & Ross		Page 2					
------------------------------	------------------------------	----------					
15 Victoria Street	210321 - Cairston Road North						
Aberdeen	Plot 2 Pervious Paving.	L					
AB10 1XB		Micco					
Date 06/03/2024	Designed by JMA	Dcainago					
File 210321 - Plot 2 Perviou	Checked by JMA	Diamaye					
CADS	Source Control 2017.1.2						

Summary of Results for 10 year Return Period

	Storm Event	1 :	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min N	Winter	7.931	0.181	0.0	0.5	0.5	1.0	ОК
60	min N	Winter	7.946	0.196	0.0	0.6	0.6	1.1	ОК
120	min N	Winter	7.933	0.183	0.0	0.5	0.5	1.0	ОК
180	min N	Winter	7.913	0.163	0.0	0.5	0.5	0.9	ОК
240	min N	Winter	7.894	0.144	0.0	0.5	0.5	0.8	ОК
360	min N	Winter	7.864	0.114	0.0	0.4	0.4	0.6	ОК
480	min N	Winter	7.843	0.093	0.0	0.4	0.4	0.5	ОК
600	min N	Winter	7.828	0.078	0.0	0.3	0.3	0.4	ОК
720	min N	Winter	7.817	0.067	0.0	0.3	0.3	0.3	ОК
960	min N	Winter	7.802	0.052	0.0	0.3	0.3	0.2	ОК
1440	min N	Winter	7.787	0.037	0.0	0.2	0.2	0.1	ОК
2160	min N	Winter	7.781	0.031	0.0	0.2	0.2	0.1	ОК
2880	min N	Winter	7.777	0.027	0.0	0.1	0.1	0.1	ОК
4320	min N	Winter	7.773	0.023	0.0	0.1	0.1	0.0	ОК
5760	min N	Winter	7.771	0.021	0.0	0.1	0.1	0.0	ОК
7200	min N	Winter	7.769	0.019	0.0	0.1	0.1	0.0	ОК
8640	min N	Winter	7.767	0.017	0.0	0.1	0.1	0.0	ΟK
10080	min N	Winter	7.766	0.016	0.0	0.1	0.1	0.0	ОК

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	23.154	0.0	1.5	25
60	min	Winter	15.530	0.0	2.1	44
120	min	Winter	10.149	0.0	2.8	80
180	min	Winter	7.867	0.0	3.3	114
240	min	Winter	6.555	0.0	3.6	146
360	min	Winter	5.058	0.0	4.2	208
480	min	Winter	4.204	0.0	4.7	270
600	min	Winter	3.641	0.0	5.1	330
720	min	Winter	3.236	0.0	5.4	390
960	min	Winter	2.686	0.0	6.0	504
1440	min	Winter	2.065	0.0	6.9	736
2160	min	Winter	1.587	0.0	8.0	1104
2880	min	Winter	1.317	0.0	8.8	1456
4320	min	Winter	1.011	0.0	10.1	2204
5760	min	Winter	0.838	0.0	11.1	2904
7200	min	Winter	0.725	0.0	12.0	3536
8640	min	Winter	0.643	0.0	12.7	4248
10080	min	Winter	0.582	0.0	13.4	5112

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	4
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 2 Perviou	Checked by JMA	Drainage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms 10 Cv (Summer) 0 nd and Ireland Cv (Winter) 0 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10 Yes Climate Change %	Yes .750 .840 15 0080 +0
Tin	ne Area Diagram	
Tota	al Area (ha) 0.017	
Ti	me (mins) Area om: To: (ha)	
	0 4 0 017	
	0 4 0.017	

©1982-2017 XP Solutions

Cameron & Ross				Page 4			
15 Victoria Street	21032	1 - Cai	rston Road North				
Aberdeen	Aberdeen Plot 2 Pervious Paving.						
AB10 1XB				Micco			
Date 06/03/2024	Desig	ned by	JMA				
File 210321 - Plot 2 Perviou	Check	ed by J	JMA	Diamatje			
CADS	Sourc	e Contr	col 2017.1.2				
<u>N</u> Storage is Or <u>Porous</u> Infiltration Coefficient Base	Model nline C Car P (m/hr)	Details over Lev ark Str	el (m) 8.550 r <u>ucture</u> Width (m)	3.5			
Membrane Percolation (1	mm/hr)	1000	Length (m)	6.0			
Max Percolation	(l/s)	5.8	Slope (1:X)	150.0			
Safety 3	Factor	2.0	Depression Storage (mm)	5			
Po	rosity	0.30	Evaporation (mm/day)	3			
Invert Lev	el (m)	7.750	Membrane Depth (m)	0			
Orific	ce Out	flow Co	ntrol				
Diameter (m) 0.025 Discharge	e Coeff	icient O	.600 Invert Level (m) 7	.750			

Cameron & R	OSS										Page	1
15 Victoria	Stree	et			2103	21 - C	airsto	n Road	d Nc	orth		
Aberdeen					Plot	2 Per	vious 1	Paving	g.		4	
AB10 1XB											Mic	J
Date 06/03/	2024				Desi	gned b	y JMA					U
File 210321	- Plo	ot 2	Pervi	ou	Chec	ked by	JMA				Uldi	natjt
CADS					Sour	ce Con	trol 20	017.1	.2			
	Summa	2 m 1 1	of Pos]+e	for 3	0 vear	Poturr	Pori	od	(+358)		
	Summe	ary (JI Kea	SUICS	101 5	o year	Recuii	I LELI	.ou	(135%)	-	
				Half Di	cain Ti	.me : 27	minutes	•				
	Storm		Max	Max	Ma	ax	Max	Max	¢	Max	Status	
	Event		Level	Depth	Infilt	ration	Control	Σ Outi	Elow	Volume		
			(m)	(m)	(1	/s)	(1/s)	(1/:	5)	(m³)		
15	min Su	ummer	7.984	0.234		0.0	0.6		0.6	1.3	ОК	
30	min Su	mmer	8.039	0.289		0.0	0.7		0.7	1.7	0 K	
60	min Su	ummer	8.079	0.329		0.0	0.7		0.7	1.9	ОК	
120	min Su	ummer	8.086	0.336		0.0	0.7		0.7	2.0	ОК	
180	min Su	ummer	8.072	0.322		0.0	0.7		0.7	1.9	ΟK	
240	min Su	ummer	8.054	0.304		0.0	0.7		0.7	1.8	ΟK	
360	min Su	ummer	8.018	0.268		0.0	0.7		0.7	1.6	ΟK	
480	min Su	ummer	7.987	0.237		0.0	0.6		0.6	1.4	ΟK	
600	min Su	ummer	7.962	0.212		0.0	0.6		0.6	1.2	ΟK	
720	min Su	ummer	7.940	0.190		0.0	0.6		0.6	1.1	ΟK	
960	min Su	ummer	7.907	0.157		0.0	0.5		0.5	0.9	ΟK	
1440	min Su	ummer	7.864	0.114		0.0	0.4		0.4	0.6	O K	
2160	min Su	ummer	7.830	0.080		0.0	0.3		0.3	0.4	ΟK	
2880	min Su	ummer	7.812	0.062		0.0	0.3		0.3	0.3	ΟK	
4320	min Su	ummer	7.792	0.042		0.0	0.2		0.2	0.1	ΟK	
5760	min Su	ummer	7.784	0.034		0.0	0.2		0.2	0.1	ΟK	
7200	min Su	ummer	7.781	0.031		0.0	0.2		0.2	0.1	ΟK	
8640	min Su	ummer	7.778	0.028		0.0	0.1		0.1	0.1	ΟK	
10080	min Su	mmer	7.777	0.027		0.0	0.1		0.1	0.1	ΟK	
15	min Wi	nter	8.014	0.264		0.0	0.7		0.7	1.5	ОК	
		:	Storm		Rain	Flooded	1 Discha	rge Ti	me-P	eak		
		1	Event	(1	mm/hr)	Volume	Volum	ne –	(mins	5)		
		-			-, ,	(m ³)	(m ³)	-	,	•		
		15	min Su	mmer	56.548	0.0	C	1.7		16		
		30	min Su	mmer	39.673	0.0)	2.4		25		

	Stor	m	Rain	F 1000	lea	Discharge	Time-Peak
	Even	nt	(mm/hr)	Volu	me	Volume	(mins)
				(m ³)	(m³)	
15	5 min	Summer	56.548	(0.0	1.7	16
30) min	Summer	39.673	(0.0	2.4	25
60) min	Summer	26.745	(0.0	3.3	42
120) min	Summer	17.385	(0.0	4.3	78
180) min	Summer	13.417	(0.0	5.0	110
240) min	Summer	11.137	(0.0	5.6	144
360) min	Summer	8.542	(0.0	6.4	208
480) min	Summer	7.068	(0.0	7.1	268
600) min	Summer	6.098	(0.0	7.6	330
720) min	Summer	5.403	(0.0	8.1	390
960) min	Summer	4.463	(0.0	9.0	510
1440) min	Summer	3.406	(0.0	10.3	750
2160) min	Summer	2.598	(0.0	11.7	1104
2880) min	Summer	2.144	(0.0	12.9	1468
4320) min	Summer	1.634	(0.0	14.7	2200
5760) min	Summer	1.346	(0.0	16.1	2880
7200) min	Summer	1.158	(0.0	17.3	3672
8640) min	Summer	1.024	(0.0	18.3	4320
10080) min	Summer	0.923	(0.0	19.2	5064
15	5 min	Winter	56.548	(0.0	1.9	16
		©19	82-2017	XP S	Sol	utions	

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcaipago
File 210321 - Plot 2 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+35%)

	Storm	ı	Max	Max	Max	Max		Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ	Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)		(l/s)	(m³)	
30	min N	Winter	8.077	0.327	0.0	0.7		0.7	1.9	ОК
60	min N	Winter	8.118	0.368	0.0	0.8		0.8	2.2	ОК
120	min N	Winter	8.112	0.362	0.0	0.8		0.8	2.2	ОК
180	min N	Winter	8.083	0.333	0.0	0.7		0.7	2.0	ОК
240	min N	Winter	8.052	0.302	0.0	0.7		0.7	1.8	ОК
360	min N	Winter	7.998	0.248	0.0	0.6		0.6	1.4	ОК
480	min N	Winter	7.957	0.207	0.0	0.6		0.6	1.2	ОК
600	min N	Winter	7.925	0.175	0.0	0.5		0.5	1.0	ΟK
720	min N	Winter	7.900	0.150	0.0	0.5		0.5	0.8	ОК
960	min N	Winter	7.865	0.115	0.0	0.4		0.4	0.6	ОК
1440	min N	Winter	7.827	0.077	0.0	0.3		0.3	0.4	ОК
2160	min N	Winter	7.801	0.051	0.0	0.3		0.3	0.2	ΟK
2880	min N	Winter	7.789	0.039	0.0	0.2		0.2	0.1	ОК
4320	min N	Winter	7.781	0.031	0.0	0.2		0.2	0.1	ОК
5760	min N	Winter	7.777	0.027	0.0	0.1		0.1	0.1	ΟK
7200	min N	Winter	7.775	0.025	0.0	0.1		0.1	0.0	ОК
8640	min N	Winter	7.773	0.023	0.0	0.1		0.1	0.0	ΟK
10080	min N	Winter	7.772	0.022	0.0	0.1		0.1	0.0	ОК

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0		7.7.1 to	20 (72	0.0	0 7	07
30	min	winter	39.6/3	0.0	2.7	27
60	mın	Winter	26.745	0.0	3.7	46
120	min	Winter	17.385	0.0	4.9	82
180	min	Winter	13.417	0.0	5.6	118
240	min	Winter	11.137	0.0	6.2	152
360	min	Winter	8.542	0.0	7.2	216
480	min	Winter	7.068	0.0	7.9	278
600	min	Winter	6.098	0.0	8.6	340
720	min	Winter	5.403	0.0	9.1	398
960	min	Winter	4.463	0.0	10.0	520
1440	min	Winter	3.406	0.0	11.5	752
2160	min	Winter	2.598	0.0	13.2	1108
2880	min	Winter	2.144	0.0	14.5	1468
4320	min	Winter	1.634	0.0	16.5	2196
5760	min	Winter	1.346	0.0	18.1	2936
7200	min	Winter	1.158	0.0	19.4	3672
8640	min	Winter	1.024	0.0	20.6	4408
10080	min	Winter	0.923	0.0	21.6	5136

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	Ly
AB10 1XB		Mirro
Date 06/03/2024	Designed by JMA	Drainago
File 210321 - Plot 2 Perviou	Checked by JMA	Diamage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms 30 Cv (Summer) and and Ireland Cv (Winter) 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) Yes Climate Change %	Yes 0.750 0.840 15 10080 +35
Tir	me Area Diagram	
Tot	al Area (ha) 0.017	
T: Fr	ime (mins) Area :om: To: (ha)	
	0 4 0.017	

Cameron & Ross		Page 4
15 Victoria Street Aberdeen	210321 - Cairston Road North Plot 2 Pervious Paving.	4
AB10 1XB		Micro
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 2 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
<u>1</u>	Model Details	

Storage is Online Cover Level (m) 8.550

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	3.5
Membrane Percolation (mm/hr)	1000	Length (m)	6.0
Max Percolation (l/s)	5.8	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	7.750	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 7.750

Cameron & Boss						Page	1			
15 Victoria Street	21()321 - 0	airston F	oad Nor	+ h	1 ago	-			
Therefore			4							
Aberdeen	PIC	Plot 2 Pervious Paving.					1 m			
ABIU IXB	- Micr									
Date 06/03/2024	Des	signed b	y JMA			Dcair	าลตด			
File 210321 - Plot 2 Pervi	ou Che	ecked by	/ JMA			Dian	luge			
CADS Source Control 2017.1.2										
Summary of Rest	ults for	100 yea:	r Return H	Period	(+35%))				
F	Half Drain	Time : 35	minutes.							
Storm Max	May	Max	Mav	Mav	Mav	Status				
Event Level	Depth Infi	ltration	Control E (Jutflow V	7olume	blacus				
(m)	(m) ((1/s)	(1/s)	(1/s)	(m ³)					
15 min Summer 8.055	0.305	0.0	0.7	0.7	1.8	ОК				
30 min Summer 8.135	0.385	0.0	0.8	0.8	2.3	ОК				
60 min Summer 8.196	0.446	0.0	0.9	0.9	2.1	OK				
120 min Summer 8 195	0.461	0.0	0.9	0.9	2.0	OK				
240 min Summer 8 172	0.443	0.0	0.9	0.9	2.7	0 K				
360 min Summer 8,125	0.375	0.0	0.8	0.8	2.2	0 K				
480 min Summer 8.084	0.334	0.0	0.7	0.7	2.0	0 K				
600 min Summer 8.049	0.299	0.0	0.7	0.7	1.8	ΟK				
720 min Summer 8.019	0.269	0.0	0.7	0.7	1.6	ОК				
960 min Summer 7.973	0.223	0.0	0.6	0.6	1.3	ΟK				
1440 min Summer 7.912	0.162	0.0	0.5	0.5	0.9	ΟK				
2160 min Summer 7.862	0.112	0.0	0.4	0.4	0.6	ΟK				
2880 min Summer 7.835	0.085	0.0	0.4	0.4	0.4	ОК				
4320 min Summer 7.806	0.056	0.0	0.3	0.3	0.2	ОК				
5/60 min Summer 7.792	0.042	0.0	0.2	0.2	0.1	OK				
7200 min Summer 7.783	0.032	0.0	0.2	0.2	0.1	OK				
10080 min Summer 7 780	0.032	0.0	0.2	0.2	0.1	O K				
15 min Winter 8.095	0.345	0.0	0.8	0.2	2.0	ОК				
Storm	Rain	Flooded	d Discharge	Time-Pe	ak					
Event	(mm/hr) Volume	Volume	(mins)						
		(m³)	(m³)							
15 min Cur		2 0 1			1.6					
15 min Su	111101 72.07	S 0.0	J 2.2		10 27					
60 min Sur	nmer 34 92	3 0.0) 3.2) 4.3		2 / 4 4					
120 min Sur	nmer 22.56	ig 0.0) 5.6		78					
180 min Sur	nmer 17.33	4 0.0	0 6.5	1	12					
240 min Sur	nmer 14.32	9 0.0	0 7.2	1	46					
360 min Sur	nmer 10.91	9 0.0	0 8.2	2	10					
480 min Sur	nmer 8.98	9 0.0	o 9.0	2	72					

240	min	Summer	14.329	(0.0	7	.2	146	
360	min	Summer	10.919	(0.0	8	.2	210	
480	min	Summer	8.989	(0.0	9	.0	272	
600	min	Summer	7.724	(0.0	9	.7	334	
72(min	Summer	6.821	(0.0	10	.3	396	
960	min	Summer	5.602	(0.0	11	.3	514	
1440	min	Summer	4.241	(0.0	12	.8	752	
2160	min	Summer	3.209	(0.0	14	.5	1108	
2880	min	Summer	2.633	(0.0	15	.9	1472	
4320	min	Summer	1.989	(0.0	18	.0	2204	
5760	min	Summer	1.628	(0.0	19	.6	2936	
7200	min	Summer	1.394	(0.0	20	.9	3576	
8640	min	Summer	1.227	(0.0	22	.0	4312	
10080	min	Summer	1.101	(0.0	23	.0	5136	
15	min	Winter	72.673	(0.0	2	.5	16	
		©198	2-2017	XP S	Solı	utions			

		-
Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	L
AB10 1XB		Micro
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 2 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+35%)

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event	5	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(l/s)	(1/s)	(m³)	
30	min	Winter	8 188	0 438	0 0	0 9	0.9	26	ОК
60	min	Winter	8 252	0 502	0.0	0 9	0.9	3 0	0 K
120	min	Winter	8 252	0.502	0.0	0.9	0.9	3.0	0 K
180	min	Winter	8 218	0.468	0.0	0.9	0.9	2.8	0 K
240	min	Winter	8 179	0.400	0.0	0.9	0.5	2.0	0 K
240	min	Winter	0.107	0.429	0.0	0.0	0.0	2.0	OK
360	m±n	winter	0.10/	0.357	0.0	0.0	0.0	2.1	0 K
480	min	Winter	8.050	0.300	0.0	0.7	0.7	1.8	ОК
600	min	Winter	8.005	0.255	0.0	0.6	0.6	1.5	ОК
720	min	Winter	7.970	0.220	0.0	0.6	0.6	1.3	ΟK
960	min	Winter	7.919	0.169	0.0	0.5	0.5	0.9	ОК
1440	min	Winter	7.861	0.111	0.0	0.4	0.4	0.6	ОК
2160	min	Winter	7.822	0.072	0.0	0.3	0.3	0.3	ΟK
2880	min	Winter	7.803	0.053	0.0	0.3	0.3	0.2	ОК
4320	min	Winter	7.786	0.036	0.0	0.2	0.2	0.1	ОК
5760	min	Winter	7.781	0.031	0.0	0.2	0.2	0.1	ОК
7200	min	Winter	7.778	0.028	0.0	0.1	0.1	0.1	ОК
8640	min	Winter	7.776	0.026	0.0	0.1	0.1	0.1	ОК
10080	min	Winter	7.774	0.024	0.0	0.1	0.1	0.0	ОК

Storm			Rain	Flooded	Discharge	Time-Peak
	Event			Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	51.518	0.0	3.6	29
60	min	Winter	34.923	0.0	4.9	46
120	min	Winter	22.569	0.0	6.3	84
180	min	Winter	17.334	0.0	7.3	120
240	min	Winter	14.329	0.0	8.1	154
360	min	Winter	10.919	0.0	9.2	220
480	min	Winter	8.989	0.0	10.1	284
600	min	Winter	7.724	0.0	10.9	344
720	min	Winter	6.821	0.0	11.6	406
960	min	Winter	5.602	0.0	12.7	524
1440	min	Winter	4.241	0.0	14.4	764
2160	min	Winter	3.209	0.0	16.3	1116
2880	min	Winter	2.633	0.0	17.8	1472
4320	min	Winter	1.989	0.0	20.2	2156
5760	min	Winter	1.628	0.0	22.0	2888
7200	min	Winter	1.394	0.0	23.5	3624
8640	min	Winter	1.227	0.0	24.7	4336
10080	min	Winter	1.101	0.0	25.9	5224

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	L.
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 2 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms <u>Tin</u> Tota Fr	infall Details FSR Winter Storms 100 Cv (Summer) 0 nd and Ireland Cv (Winter) 0 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 1 Yes Climate Change % ne Area Diagram al Area (ha) 0.017 me (mins) Area om: To: (ha) 0 4 0.017	Yes .750 .840 15 0080 +35

©1982-2017 XP Solutions

	Page 4						
210321 - Cairston Road North							
Plot 2 Pervious Paving.	L						
	Micco						
Designed by JMA							
Checked by JMA	Dialige						
Source Control 2017.1.2							
<u>Model Details</u> Storage is Online Cover Level (m) 8.550							
Car Park Structure							
(m/hr) 0.00000 Width (m) mm/hr) 1000 Length (m) (1/s) 5.8 Slope (1:X) Factor 2.0 Depression Storage (mm) rosity 0.30 Evaporation (mm/day) el (m) 7.750 Membrane Depth (m)	3.5 6.0 150.0 5 3 0						
	210321 - Cairston Road North Plot 2 Pervious Paving. Designed by JMA Checked by JMA Source Control 2017.1.2 Model Details hline Cover Level (m) 8.550 Car Park Structure (m/hr) 0.0000 Width (m) mm/hr) 1000 Length (m) (1/s) 5.8 Slope (1:X) Factor 2.0 Depression Storage (mm) rosity 0.30 Evaporation (mm/day) el (m) 7.750 Membrane Depth (m)						

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 7.750

Cameron & R	loss								Page	1
15 Victoria	Street			21032	1 - C	airston	Road No	orth		
Aberdeen				Plot	2 Per	vious Pa	wing.		4	66.11
AB10 1XB							-			Jun
Date 06/03/	2024			Desia	ned h	AMT, MA			- Mici	
Eile 210221		Domiou		Cheel	ad by	- TMD			Drai	nade
File 210321	- Plot 2	Perviou	1	Спеск	ea by	AMU			Contraction Contraction	
CADS				Sourc	e Con	trol 201	7.1.2			
	Summary of	of Resul	ts fo	or 200) year	Return	Period	(+35%))	
		Hal	li Dra	ın Tim	e:39	minutes.				
	Storm	Max M	lax	Max	c	Max	Max	Max	Status	
	Event	Level De	epth I	nfiltr	ation	Control E	Outflow	Volume		
		(m) (- (m)	(1/s	5)	(1/s)	(1/s)	(m³)		
15	5 min Summer	8.105 0.	.355		0.0	0.8	0.8	2.1	ΟK	
30) min Summer	8.204 0.	.454		0.0	0.9	0.9	2.7	ОК	
60) min Summer	8.281 0.	.531		0.0	0.9	0.9	3.2	OK	
120) min Summer	8.302 0.	525		0.0	1.0	1.0	3.3	OK	
240) min Summer) min Summer	8.200 U.	509		0.0	0.9	0.9	3.2	OK	
360) min Summer	8 204 0	454		0.0	0.9	0.9	27	0 K	
480) min Summer	8 156 0	406		0.0	0.9	0.9	2.7	0 K	
600) min Summer	8.114 0.	364		0.0	0.8	0.8	2.2	0 K	
720) min Summer	8.079 0.	.329		0.0	0.7	0.7	1.9	0 K	
960) min Summer	8.023 0.	273		0.0	0.7	0.7	1.6	ΟK	
1440) min Summer	7.948 0.	198		0.0	0.6	0.6	1.1	ОК	
2160) min Summer	7.886 0.	.136		0.0	0.5	0.5	0.7	ОК	
2880) min Summer	7.853 0.	103		0.0	0.4	0.4	0.5	ΟK	
4320) min Summer	7.817 0.	.067		0.0	0.3	0.3	0.3	ΟK	
5760) min Summer	7.799 0.	.049		0.0	0.3	0.3	0.2	O K	
7200) min Summer	7.790 0.	.040		0.0	0.2	0.2	0.1	ΟK	
8640) min Summer	7.785 0.	.035		0.0	0.2	0.2	0.1	ΟK	
10080) min Summer	7.782 0.	.032		0.0	0.2	0.2	0.1	ΟK	
15	o min Winter	8.152 0.	.402		0.0	0.8	0.8	2.4	ОК	
		Storm	R	ain I	7] ooder	1 Discharo	re Time-P	oak		
		Event	(mn	n/hr)	Volume	Volume	(mine	3)		
			(., ,	(m ³)	(m ³)	(- /		
	15	min Summe	er 83	3.965	0.0	2.	6	16		
	30	min Summe	er 59	9.880	0.0	3.	7	28		
	60	min Summe	er 40).721	0.0	5.	1	44		
	120	min Summe	er 26	b.227	0.0	J 6.	6	80		
	180	min Summe	er 20	0.088	0.0	J 7.	ь 2	114 116		
	240	min Summe	er 10	0.300	0.0	. 8.	с Г	⊥40 010		
	300	min Summe	er 12	2.37/	0.0	л 9. П 10	Л	212 274		
	400	min Summe	er 10	3 850	0.0) 11	2	∠ / प 336		
	720	min Summe	er 5	7 800	0.0) 11.	- 8	398		

720 min Summer

960 min Summer

1440 min Summer

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

15 min Winter

10080 min Summer

7.800

6.386

4.811

3.624

2.964

2.228

1.817

1.550

1.361

1.219

83.965

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2017 XP Solutions

11.8

12.9

14.6

16.4

17.9

20.2

21.9

23.3

24.5

25.6

2.9

398

520

754

1108

1472

2204

2936

3672

4352

5136

16

		-
Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	L
AB10 1XB		Micro
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 2 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 200 year Return Period (+35%)

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min	Winter	8.267	0.517	0.0	0.9	0.9	3.1	ОК
60	min	Winter	8.349	0.599	0.0	1.0	1.0	3.6	ΟK
120	min	Winter	8.356	0.606	0.0	1.0	1.0	3.7	ОК
180	min	Winter	8.319	0.569	0.0	1.0	1.0	3.5	ОК
240	min	Winter	8.274	0.524	0.0	0.9	0.9	3.2	ΟK
360	min	Winter	8.190	0.440	0.0	0.9	0.9	2.6	ОК
480	min	Winter	8.121	0.371	0.0	0.8	0.8	2.2	ОК
600	min	Winter	8.067	0.317	0.0	0.7	0.7	1.9	ОК
720	min	Winter	8.023	0.273	0.0	0.7	0.7	1.6	ΟK
960	min	Winter	7.960	0.210	0.0	0.6	0.6	1.2	ОК
1440	min	Winter	7.888	0.138	0.0	0.5	0.5	0.7	ОК
2160	min	Winter	7.837	0.087	0.0	0.4	0.4	0.4	ОК
2880	min	Winter	7.814	0.064	0.0	0.3	0.3	0.3	ОК
4320	min	Winter	7.792	0.042	0.0	0.2	0.2	0.1	ОК
5760	min	Winter	7.784	0.034	0.0	0.2	0.2	0.1	ОК
7200	min	Winter	7.780	0.030	0.0	0.2	0.2	0.1	ΟK
8640	min	Winter	7.778	0.028	0.0	0.1	0.1	0.1	ΟK
10080	min	Winter	7.776	0.026	0.0	0.1	0.1	0.1	ОК

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	59.880	0.0	4.2	29
60	min	Winter	40.721	0.0	5.7	48
120	min	Winter	26.227	0.0	7.4	86
180	min	Winter	20.088	0.0	8.5	122
240	min	Winter	16.566	0.0	9.3	156
360	min	Winter	12.577	0.0	10.7	222
480	min	Winter	10.324	0.0	11.7	286
600	min	Winter	8.850	0.0	12.5	348
720	min	Winter	7.800	0.0	13.2	410
960	min	Winter	6.386	0.0	14.4	530
1440	min	Winter	4.811	0.0	16.3	764
2160	min	Winter	3.624	0.0	18.4	1124
2880	min	Winter	2.964	0.0	20.1	1472
4320	min	Winter	2.228	0.0	22.6	2188
5760	min	Winter	1.817	0.0	24.5	2928
7200	min	Winter	1.550	0.0	26.1	3640
8640	min	Winter	1.361	0.0	27.5	4392
10080	min	Winter	1.219	0.0	28.7	5128

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 2 Pervious Paving.	4
AB10 1XB		Micro
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 2 Perviou	Checked by JMA	Diamage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model Return Period (years)	FSR Winter Storms	Yes 0 750
Region Scotla	and and Ireland Cv (Winter)	0.840
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R Summer Storms	0.250 Longest Storm (mins)	+35
<u> </u>	ne Area Diagram	
Tota	al Area (ha) 0.017	
T	ime (mins) Area	
Fr	com: To: (ha)	
	0 4 0.017	

©1982-2017 XP Solutions

Cameron & Ross		Page 4				
15 Victoria Street	210321 - Cairston Road North					
Aberdeen	Plot 2 Pervious Paving.	4				
AB10 1XB		Micco				
Date 06/03/2024	Designed by JMA					
File 210321 - Plot 2 Perviou	Checked by JMA	Diamaye				
CADS	Source Control 2017.1.2					
Model Details						
Storage is of	TITLE COVEL LEVEL (M) 8.350					
Porous	Car Park Structure					
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	3.5				

5.5	WIGCH (III)	0.00000	IIICIACION COETIICIENC BASE (M/NI)
6.0	Length (m)	1000	Membrane Percolation (mm/hr)
150.0	Slope (1:X)	5.8	Max Percolation (l/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (m)	7.750	Invert Level (m)

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 7.750

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 3 Pervious Paving.	L.
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 3 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 9 minutes.

	Storm	n	Max	Max	Max	Max	Max	Max	Status
	Event	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(l/s)	(m³)	
15	min	Summer	8 047	0 047	0 0	0 2	0.2	0 1	ОК
30	min	Summer	8 057	0 057	0.0	0.2	0.2	0.2	0 K
60	min	Summer	8 061	0.057	0.0	0.3	0.5	0.2	0 K
120	min	Summer	8 058	0.001	0.0	0.3	0.5	0.2	0 K
180	min	Summer	8 052	0.052	0.0	0.3	0.5	0.2	0 K
240	min	Summer	8 047	0 047	0.0	0.2	0.2	0.1	0 K
360	min	Summer	8 040	0 040	0.0	0.2	0.2	0.1	0 K
480	min	Summer	8 035	0.035	0.0	0.2	0.2	0.1	0 K
600	min	Summer	8 033	0.033	0.0	0.2	0.2	0 1	0 K
720	min	Summer	8.031	0.031	0.0	0.2	0.2	0.1	0 K
960	min	Summer	8.028	0.028	0.0	0.1	0.1	0.0	ОК
1440	min	Summer	8.024	0.024	0.0	0.1	0.1	0.0	ОК
2160	min	Summer	8.021	0.021	0.0	0.1	0.1	0.0	ОК
2880	min	Summer	8.018	0.018	0.0	0.1	0.1	0.0	ОК
4320	min	Summer	8.015	0.015	0.0	0.1	0.1	0.0	ОК
5760	min	Summer	8.014	0.014	0.0	0.0	0.0	0.0	ОК
7200	min	Summer	8.013	0.013	0.0	0.0	0.0	0.0	ОК
8640	min	Summer	8.013	0.013	0.0	0.0	0.0	0.0	ОК
10080	min	Summer	8.012	0.012	0.0	0.0	0.0	0.0	ОК
15	min	Winter	8.053	0.053	0.0	0.3	0.3	0.2	ОК

Storm		Rain	Flood	led	Discharge	Time-Peak		
	Even	t	(mm/hr)	Volu	ne	Volume	(mins)	
				(m³))	(m³)		
15	min	Summer	19.000	0	.0	0.2	13	
30	min	Summer	13.218	0	.0	0.4	22	
60	min	Summer	8.918	0	.0	0.5	38	
120	min	Summer	5.920	0	.0	0.7	70	
180	min	Summer	4.641	0	.0	0.9	100	
240	min	Summer	3.903	0	.0	1.0	130	
360	min	Summer	3.055	0	.0	1.2	190	
480	min	Summer	2.569	0	.0	1.4	248	
600	min	Summer	2.246	0	.0	1.5	308	
720	min	Summer	2.013	0	.0	1.6	368	
960	min	Summer	1.694	0	.0	1.8	488	
1440	min	Summer	1.326	0	.0	2.2	728	
2160	min	Summer	1.034	0	.0	2.5	1092	
2880	min	Summer	0.866	0	.0	2.8	1428	
4320	min	Summer	0.675	0	.0	3.3	2200	
5760	min	Summer	0.566	0	.0	3.6	2792	
7200	min	Summer	0.494	0	.0	3.9	3656	
8640	min	Summer	0,441	0	.0	4.1	4280	
10080	min	Summer	0.401	0	. 0	4 3	5144	
15	min	Winter	19 000	0	0	1.5	14	
10		WINCEL	10.000	0	• 0	0.5	11	
		@199	32-2017	YD C	-1	utions		
		ST)(73 L C	UT U	UCIUNS		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 3 Pervious Paving.	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 3 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min N	Winter	8.061	0.061	0.0	0.3	0.3	0.2	ОК
60	min N	Winter	8.062	0.062	0.0	0.3	0.3	0.2	ОК
120	min N	Winter	8.054	0.054	0.0	0.3	0.3	0.2	ОК
180	min N	Winter	8.046	0.046	0.0	0.2	0.2	0.1	ОК
240	min N	Winter	8.039	0.039	0.0	0.2	0.2	0.1	ОК
360	min N	Winter	8.033	0.033	0.0	0.2	0.2	0.1	ΟK
480	min N	Winter	8.029	0.029	0.0	0.1	0.1	0.0	ОК
600	min N	Winter	8.027	0.027	0.0	0.1	0.1	0.0	ΟK
720	min N	Winter	8.025	0.025	0.0	0.1	0.1	0.0	ΟK
960	min N	Winter	8.023	0.023	0.0	0.1	0.1	0.0	ОК
1440	min N	Winter	8.020	0.020	0.0	0.1	0.1	0.0	ОК
2160	min N	Winter	8.016	0.016	0.0	0.1	0.1	0.0	ОК
2880	min N	Winter	8.015	0.015	0.0	0.1	0.1	0.0	ΟK
4320	min N	Winter	8.013	0.013	0.0	0.0	0.0	0.0	ОК
5760	min N	Winter	8.012	0.012	0.0	0.0	0.0	0.0	ΟK
7200	min N	Winter	8.011	0.011	0.0	0.0	0.0	0.0	ОК
8640	min N	Winter	8.011	0.011	0.0	0.0	0.0	0.0	ΟK
10080	min N	Winter	8.010	0.010	0.0	0.0	0.0	0.0	ΟK

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	13.218	0.0	0.4	23
60	min	Winter	8.918	0.0	0.6	40
120	min	Winter	5.920	0.0	0.9	72
180	min	Winter	4.641	0.0	1.0	102
240	min	Winter	3.903	0.0	1.2	132
360	min	Winter	3.055	0.0	1.4	188
480	min	Winter	2.569	0.0	1.6	248
600	min	Winter	2.246	0.0	1.7	308
720	min	Winter	2.013	0.0	1.9	366
960	min	Winter	1.694	0.0	2.1	488
1440	min	Winter	1.326	0.0	2.5	732
2160	min	Winter	1.034	0.0	2.9	1068
2880	min	Winter	0.866	0.0	3.2	1464
4320	min	Winter	0.675	0.0	3.7	2240
5760	min	Winter	0.566	0.0	4.1	3040
7200	min	Winter	0.494	0.0	4.4	3576
8640	min	Winter	0.441	0.0	4.7	4488
10080	min	Winter	0.401	0.0	4.9	5136

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 3 Pervious Paving.	L.
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 3 Perviou	Checked by JMA	Dialitage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	1 Cv (Summer)	0.750
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins)	10080
Summer Storms	Yes Climate Change %	+0
<u> </u>	ne Area Diagram	
Tota	al Area (ha) 0.010	
	ime (mins) Area	
FT	om: TO: (na)	
	0 4 0.010	

	Page 4						
15 Victoria Street 210321 - Cairston Road North							
Plot 3 Pervious Paving.	4						
	Micco						
Designed by JMA							
Checked by JMA	Diamaye						
Source Control 2017.1.2							
<u>Model Details</u> Storage is Online Cover Level (m) 8.800 Porous Car Park Structure							
(m/hr) 0.00000 Width (m) mm/hr) 1000 Length (m) (1/s) 7.6 Slope (1:X) Factor 2.0 Depression Storage (mm)	2.5 11.0 150.0 5						
	210321 - Cairston Road North Plot 3 Pervious Paving. Designed by JMA Checked by JMA Source Control 2017.1.2 Model Details Aline Cover Level (m) 8.800 Car Park Structure (m/hr) 0.00000 Width (m) mm/hr) 1000 Length (m) (1/s) 7.6 Slope (1:X) Factor 2.0 Depression Storage (mm)						

Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 8.000 Membrane Depth (m) 0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 8.000

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 3 Pervious Paving.	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 3 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Half Drain Time : 13 minutes.

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(1/s)	(m³)	
		_							
15	min :	Summer	8.077	0.077	0.0	0.3	0.3	0.3	ОК
30	min :	Summer	8.089	0.089	0.0	0.4	0.4	0.4	ΟK
60	min :	Summer	8.096	0.096	0.0	0.4	0.4	0.5	ОК
120	min :	Summer	8.091	0.091	0.0	0.4	0.4	0.5	ОК
180	min :	Summer	8.084	0.084	0.0	0.3	0.3	0.4	ΟK
240	min :	Summer	8.078	0.078	0.0	0.3	0.3	0.3	ΟK
360	min :	Summer	8.067	0.067	0.0	0.3	0.3	0.3	ОК
480	min :	Summer	8.058	0.058	0.0	0.3	0.3	0.2	ОК
600	min :	Summer	8.051	0.051	0.0	0.3	0.3	0.1	ΟK
720	min :	Summer	8.046	0.046	0.0	0.2	0.2	0.1	ОК
960	min :	Summer	8.039	0.039	0.0	0.2	0.2	0.1	ОК
1440	min :	Summer	8.032	0.032	0.0	0.2	0.2	0.1	ОК
2160	min :	Summer	8.027	0.027	0.0	0.1	0.1	0.0	ОК
2880	min :	Summer	8.024	0.024	0.0	0.1	0.1	0.0	ОК
4320	min :	Summer	8.020	0.020	0.0	0.1	0.1	0.0	ОК
5760	min :	Summer	8.018	0.018	0.0	0.1	0.1	0.0	ОК
7200	min :	Summer	8.016	0.016	0.0	0.1	0.1	0.0	ОК
8640	min :	Summer	8.015	0.015	0.0	0.1	0.1	0.0	ОК
10080	min :	Summer	8.014	0.014	0.0	0.0	0.0	0.0	ОК
15	min N	Winter	8.084	0.084	0.0	0.3	0.3	0.4	ОК

Rain	Flooded	Discharge	Time-Peak	
(mm/hr)	Volume	Volume	(mins)	
	(m³)	(m³)		
33.317	0.0	0.5	14	
23.154	0.0	0.7	23	
15.530	0.0	1.0	40	
10.149	0.0	1.4	74	
7.867	0.0	1.6	106	
6.555	0.0	1.8	136	
5.058	0.0	2.1	196	
4.204	0.0	2.4	256	
3.641	0.0	2.6	314	
3.236	0.0	2.7	374	
2.686	0.0	3.0	492	
2.065	0.0	3.5	734	
1.587	0.0	4.0	1080	
1.317	0.0	4.4	1468	
1.011	0.0	5.1	2188	
0.838	0.0	5.6	2920	
0.725	0.0	6.0	3592	
0.643	0.0	6.3	42.96	
0.582	0,0	6.6	5088	
33.317	0.0	0.6	15	
00.01/	0.0	0.0	10	
32-2017	XP Sol	utions		
	Rain (mm/hr) 33.317 23.154 15.530 10.149 7.867 6.555 5.058 4.204 3.641 3.236 2.686 2.065 1.587 1.317 1.011 0.838 0.725 0.643 0.582 33.317	Rain Flooded (mm/hr) Volume 33.317 0.0 23.154 0.0 15.530 0.0 15.530 0.0 10.149 0.0 7.867 0.0 6.555 0.0 5.058 0.0 4.204 0.0 3.641 0.0 3.236 0.0 2.665 0.0 1.587 0.0 1.317 0.0 0.838 0.0 0.725 0.0 0.582 0.0 33.317 0.0	Rain Flooded Discharge (mm/hr) Volume Volume (m³) (m³) 33.317 0.0 0.5 23.154 0.0 0.7 15.530 0.0 1.0 10.149 0.0 1.4 7.867 0.0 1.6 6.555 0.0 1.8 5.058 0.0 2.1 4.204 0.0 2.4 3.641 0.0 2.6 3.236 0.0 2.7 2.686 0.0 3.0 2.065 0.0 3.5 1.587 0.0 4.0 1.317 0.0 4.4 1.011 0.0 5.1 0.838 0.0 5.6 0.725 0.0 6.0 0.582 0.0 6.6 33.317 0.0 0.6	Rain Flooded Discharge Time-Peak (nm/hr) Volume Volume (mins) 33.317 0.0 0.5 14 23.154 0.0 0.7 23 15.530 0.0 1.0 40 10.149 0.0 1.4 74 7.867 0.0 1.6 106 6.555 0.0 1.8 136 5.058 0.0 2.1 196 4.204 0.0 2.4 256 3.641 0.0 2.6 314 3.236 0.0 2.7 374 2.686 0.0 3.0 492 2.065 0.0 3.5 734 1.587 0.0 4.0 1080 1.317 0.0 4.4 1468 1.011 0.0 5.1 2188 0.838 0.0 5.6 2920 0.725 0.0 6.3 4296 <

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 3 Pervious Paving.	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 3 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
30	min M	Winter	8.096	0.096	0.0	0.4	0.4	0.5	ОК
60	min 1	Winter	8.100	0.100	0.0	0.4	0.4	0.5	ОК
120	min 1	Winter	8.091	0.091	0.0	0.4	0.4	0.4	ОК
180	min 1	Winter	8.079	0.079	0.0	0.3	0.3	0.4	ОК
240	min M	Winter	8.070	0.070	0.0	0.3	0.3	0.3	ΟK
360	min M	Winter	8.055	0.055	0.0	0.3	0.3	0.2	ΟK
480	min 1	Winter	8.045	0.045	0.0	0.2	0.2	0.1	ΟK
600	min N	Winter	8.038	0.038	0.0	0.2	0.2	0.1	ΟK
720	min 1	Winter	8.034	0.034	0.0	0.2	0.2	0.1	ОК
960	min N	Winter	8.030	0.030	0.0	0.2	0.2	0.1	ΟK
1440	min M	Winter	8.026	0.026	0.0	0.1	0.1	0.0	ОК
2160	min M	Winter	8.022	0.022	0.0	0.1	0.1	0.0	ОК
2880	min M	Winter	8.020	0.020	0.0	0.1	0.1	0.0	ΟK
4320	min M	Winter	8.016	0.016	0.0	0.1	0.1	0.0	ΟK
5760	min M	Winter	8.014	0.014	0.0	0.0	0.0	0.0	ОК
7200	min M	Winter	8.014	0.014	0.0	0.0	0.0	0.0	ОК
8640	min M	Winter	8.013	0.013	0.0	0.0	0.0	0.0	ΟK
10080	min N	Winter	8.012	0.012	0.0	0.0	0.0	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	23.154	0.0	0.8	24
60	min	Winter	15.530	0.0	1.2	42
120	min	Winter	10.149	0.0	1.6	78
180	min	Winter	7.867	0.0	1.8	110
240	min	Winter	6.555	0.0	2.1	140
360	min	Winter	5.058	0.0	2.4	200
480	min	Winter	4.204	0.0	2.7	256
600	min	Winter	3.641	0.0	2.9	314
720	min	Winter	3.236	0.0	3.1	372
960	min	Winter	2.686	0.0	3.4	490
1440	min	Winter	2.065	0.0	3.9	730
2160	min	Winter	1.587	0.0	4.5	1096
2880	min	Winter	1.317	0.0	5.0	1444
4320	min	Winter	1.011	0.0	5.7	2156
5760	min	Winter	0.838	0.0	6.3	2840
7200	min	Winter	0.725	0.0	6.8	3720
8640	min	Winter	0.643	0.0	7.2	4288
10080	min	Winter	0.582	0.0	7.5	5136

Cameron & Ross		Page 3
15 Victoria Street Aberdeen	210321 - Cairston Road North Plot 3 Pervious Paving.	
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desipado
File 210321 - Plot 3 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Ba	infall Details	

~

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	10	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	13.000	Shortest Storm (mins)	15
Ratio R	0.250	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+0

Time Area Diagram

Total Area (ha) 0.010

Time	(mins)	Area
From:	To:	(ha)

0 4 0.010

Cameron & Ross			Page 4
15 Victoria Street	210321 - Cairston Road	North	
Aberdeen	Plot 3 Pervious Paving.		L
AB10 1XB			Micco
Date 06/03/2024	Designed by JMA		Desinado
File 210321 - Plot 3 Perviou	Checked by JMA		Dialitaye
CADS	Source Control 2017.1.2		
M	Model Details		
Storage is Or	nline Cover Level (m) 8.800		
Porous	Car Park Structure		
Infiltration Coefficient Base	(m/hr) 0.00000	Width (m)	2.5

	11±0.011 (11.)	2.0
1000	Length (m)	11.0
7.6	Slope (1:X)	150.0
2.0	Depression Storage (mm)	5
0.30	Evaporation (mm/day)	3
8.000	Membrane Depth (m)	0
	1000 7.6 2.0 0.30 8.000	1000Length (m)7.6Slope (1:X)2.0Depression Storage (mm)0.30Evaporation (mm/day)8.000Membrane Depth (m)

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 8.000

©1982-2017 XP Solutions

Cameron & R	oss									Page 1
15 Victoria	Str	reet			2103	321 - C	airston 1	Road No	orth	5
Aberdeen	Plot 3 Pervious Paving.							L.		
AB10 1XB							Micco			
Date 06/03/	2024				Desi	igned b	y JMA			
File 210321	- F	lot 3	Perv	iou	Chec	cked by	JMA			Digitig
CADS					Soui	cce Con	trol 201	7.1.2		
	Sui	nmarv	of Re	9111+9	for 3	0 vear	Return I	Period	(+35%)	
	<u></u>	uniar y	01 10	SULCO	101 3	ycur	iteeuin i	CIICU	(1000)	-
				Half D	rain T:	ime : 21	minutes.			
	Stor	m	Max	Max	м	ax	Max	Max	Max	Status
	Even	t	Level	Depth	Infilt	tration	Control S	Outflow	Volume	
			(m)	(m)	(1	/s)	(l/s)	(l/s)	(m³)	
15	min	Summer	8.120	0.120		0.0	0.4	0.4	0.7	ОК
30	min	Summer	8.144	0.144		0.0	0.5	0.5	0.9	0 K
60	min	Summer	8.159	0.159		0.0	0.5	0.5	1.0	O K
120	min	Summer	8.157	0.157		0.0	0.5	0.5	1.0	O K
180	min	Summer	8.148	0.148		0.0	0.5	0.5	0.9	O K
240	min	Summer	8.138	0.138		0.0	0.5	0.5	0.8	O K
360	min	Summer	8.120	0.120		0.0	0.4	0.4	0.7	O K
480	min	Summer	8.105	0.105		0.0	0.4	0.4	0.6	O K
600	min	Summer	8.094	0.094		0.0	0.4	0.4	0.5	ΟK
720	min	Summer	8.084	0.084		0.0	0.3	0.3	0.4	ОК
960	min	Summer	8.070	0.070		0.0	0.3	0.3	0.3	OK
1440	mın	Summer	8.053	0.053		0.0	0.3	0.3	0.2	OK
2160	min	Summer	8.038	0.038		0.0	0.2	0.2	0.1	OK
2000	min	Summer	0.033	0.033		0.0	0.2	0.2	0.1	OK
4320	min	Summor	8 02/	0.027		0.0	0.1	0.1	0.0	OK
7200	min	Summer	8 022	0.024		0.0	0.1	0.1	0.0	O K
8640	min	Summer	8 021	0.022		0.0	0.1	0.1	0.0	O K
10080	min	Summer	8 019	0.021		0.0	0.1	0.1	0.0	O K
15	min	Winter	8.133	0.133		0.0	0.5	0.5	0.8	ок
			Storm		Rain	Flooded	1 Discharge	a Time-P	eak	
			Event	(mm/hr)	Volume	Volume	(min	s)	
				,	/	(m ³)	(m ³)	• -		
		15	min Sı	ummer	56.548	0.0	0.9)	15	
		30	min Su	ummer	39.673	0.0) 1.3	3	24	

0000				220011a290			
		Even	t	(mm/hr)	Volume	Volume	(mins)
					(m³)	(m³)	
	15	min	Summer	56.548	0.0	0.9	15
	30	min	Summer	39.673	0.0	1.3	24
	60	min	Summer	26.745	0.0	1.9	42
	120	min	Summer	17.385	0.0	2.5	76
	180	min	Summer	13.417	0.0	2.9	108
	240	min	Summer	11.137	0.0	3.2	142
	360	min	Summer	8.542	0.0	3.7	204
	480	min	Summer	7.068	0.0	4.1	264
	600	min	Summer	6.098	0.0	4.4	326
	720	min	Summer	5.403	0.0	4.7	384
	960	min	Summer	4.463	0.0	5.2	502
	1440	min	Summer	3.406	0.0	5.9	736
	2160	min	Summer	2.598	0.0	6.8	1100
	2880	min	Summer	2.144	0.0	7.4	1456
	4320	min	Summer	1.634	0.0	8.4	2164
	5760	min	Summer	1.346	0.0	9.2	2928
	7200	min	Summer	1.158	0.0	9.9	3672
	8640	min	Summer	1.024	0.0	10.4	4296
	10080	min	Summer	0.923	0.0	10.9	5128
	15	min	Winter	56.548	0.0	1.0	16
			©198	82-2017	XP Sol	lutions	

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 3 Pervious Paving.	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcaipago
File 210321 - Plot 3 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+35%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min	Winter	8.160	0.160	0.0	0.5	0.5	1.0	ОК
60	min	Winter	8.174	0.174	0.0	0.5	0.5	1.1	ΟK
120	min	Winter	8.164	0.164	0.0	0.5	0.5	1.1	ΟK
180	min	Winter	8.148	0.148	0.0	0.5	0.5	0.9	ОК
240	min	Winter	8.132	0.132	0.0	0.5	0.5	0.8	ОК
360	min	Winter	8.107	0.107	0.0	0.4	0.4	0.6	ОК
480	min	Winter	8.088	0.088	0.0	0.4	0.4	0.4	ОК
600	min	Winter	8.075	0.075	0.0	0.3	0.3	0.3	ОК
720	min	Winter	8.065	0.065	0.0	0.3	0.3	0.2	ОК
960	min	Winter	8.051	0.051	0.0	0.3	0.3	0.1	ОК
1440	min	Winter	8.036	0.036	0.0	0.2	0.2	0.1	ОК
2160	min	Winter	8.030	0.030	0.0	0.2	0.2	0.0	ОК
2880	min	Winter	8.026	0.026	0.0	0.1	0.1	0.0	ОК
4320	min	Winter	8.022	0.022	0.0	0.1	0.1	0.0	ОК
5760	min	Winter	8.020	0.020	0.0	0.1	0.1	0.0	ОК
7200	min	Winter	8.018	0.018	0.0	0.1	0.1	0.0	0 K
8640	min	Winter	8.016	0.016	0.0	0,1	0.1	0.0	0 K
10080	min	Winter	8.015	0.015	0.0	0.1	0.1	0.0	ΟK

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	39.673	0.0	1.5	26
60	min	Winter	26.745	0.0	2.1	44
120	min	Winter	17.385	0.0	2.8	82
180	min	Winter	13.417	0.0	3.2	116
240	min	Winter	11.137	0.0	3.6	148
360	min	Winter	8.542	0.0	4.1	212
480	min	Winter	7.068	0.0	4.6	272
600	min	Winter	6.098	0.0	5.0	332
720	min	Winter	5.403	0.0	5.3	390
960	min	Winter	4.463	0.0	5.8	502
1440	min	Winter	3.406	0.0	6.6	736
2160	min	Winter	2.598	0.0	7.6	1072
2880	min	Winter	2.144	0.0	8.3	1432
4320	min	Winter	1.634	0.0	9.5	2180
5760	min	Winter	1.346	0.0	10.4	2912
7200	min	Winter	1.158	0.0	11.1	3592
8640	min	Winter	1.024	0.0	11.8	4264
10080	min	Winter	0.923	0.0	12.3	4864

Source Control 2017.1.2

Rainfall Details

File 210321 - Plot 3 Perviou... | Checked by JMA

CADS

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	30	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	13.000	Shortest Storm (mins)	15
Ratio R	0.250	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+35

Time Area Diagram

Total Area (ha) 0.010

Time	(mins)	Area
From:	To:	(ha)

0 4 0.010

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 3 Pervious Paving.	4
AB10 1XB		~~~
Date 06/03/2024	Designed by JMA	MICLO
File $210321 - Plot 3$ Perviou	Checked by JMA	Drainage
	Source Control 2017 1 2	
<u> </u>	Model Details	
Storage is On	nline Cover Level (m) 8.800	
Porous	Car Park Structure	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	2.5
Membrane Percolation (mm/hr) 1000 Length (m)	11.0
Max rercolation Safety	Factor 2.0 Depression Storage (mm)	5
Po	rosity 0.30 Evaporation (mm/day)	3
Invert Lev	el (m) 8.000 Membrane Depth (m)	0
Orific	ce Outflow Control	
Diameter (m) 0.025 Discharge	e Coefficient 0.600 Invert Level (m) 8.	.000

Cameron & Ross							Page 1					
15 Victoria Street		21032	1 – C	airston	Road No	rth						
Aberdeen		Plot	- 0 3 Par	vious Pa	vina	1 011	4					
ABIO 1YB		1100	JICI	VIOUS IA	ving.		1 mm					
P_{2}		Docia	nod h	57 TM7			Micro					
Eilo 210221 Diet 2	Dowriou	Check		Y UMA			Drainage					
FILE 210321 - FIOL 3	And a second which is a manufacture of the second s											
Cummo retro												
<u>Summary 01</u>	L RESULLS I	01 100	уеат	Recuin	reriou	(+55%)	<u> </u>					
Half Drain Time : 26 minutes.												
Storm	Max Max	Max		Max	Max	Max	Status					
Event	Level Depth 3	Infiltra	ation	Control S	Outflow	Volume						
	(m) (m)	(1/s)	(1/s)	(1/s)	(m³)						
15 min Summer	8.152 0.152		0.0	0.5	0.5	1.0	ОК					
30 min Summer	8.185 0.185		0.0	0.5	0.5	1.2	0 K					
60 min Summer	8.209 0.209		0.0	0.6	0.6	1.4	O K					
120 min Summer	8.209 0.209		0.0	0.6	0.6	1.4	O K					
180 min Summer	8.198 0.198		0.0	0.6	0.6	1.3	O K					
240 min Summer	8.186 0.186		0.0	0.5	0.5	1.2	O K					
360 min Summer	8.163 0.163		0.0	0.5	0.5	1.0	ОК					
480 min Summer	8.143 0.143		0.0	0.5	0.5	0.9	OK					
720 min Summer	8 114 0 114		0.0	0.4	0.4	0.7	O K O K					
960 min Summer	8.094 0.094		0.0	0.4	0.4	0.5	O K					
1440 min Summer	8.070 0.070		0.0	0.3	0.3	0.3	0 K					
2160 min Summer	8.051 0.051		0.0	0.3	0.3	0.1	O K					
2880 min Summer	8.039 0.039		0.0	0.2	0.2	0.1	O K					
4320 min Summer	8.031 0.031		0.0	0.2	0.2	0.1	O K					
5760 min Summer	8.027 0.027		0.0	0.1	0.1	0.0	O K					
7200 min Summer	8.025 0.025		0.0	0.1	0.1	0.0	ОК					
8640 min Summer	8.023 0.023		0.0	0.1	0.1	0.0	OK					
15 min Winter	8.169 0.169		0.0	0.5	0.1	1.1	O K					
						1-						
S -	torm 1	kain F	Toodec	1 Discharg	e Time-P	ear						
<u>-</u>	vent (n	m/nr)	(m ³)	(m ³)	(mins	5)						
			(111)	(111)								
15 n	nin Summer 7	2.673	0.0) 1.	2	16						
30 n	nin Summer 5	51.518	0.0) 1.	8	25						
60 r	nin Summer 3	34.923	0.0	2.	5	42						
120 r	nin Summer 2	2.569	0.0	3.	2	/8						
180 m	uin Summer 1	1.334 1 329	0.0) 3.) 1	o 1	144						
360 n	nin Summer 1	.0.919	0.0) 4.	8	206						

180	min	Summer	17.334		0.0		3.8	110		
240	min	Summer	14.329		0.0		4.1	144		
360	min	Summer	10.919		0.0		4.8	206		
480	min	Summer	8.989		0.0		5.2	268		
600	min	Summer	7.724		0.0		5.6	328		
720	min	Summer	6.821		0.0		6.0	390		
960	min	Summer	5.602		0.0		6.5	510		
1440	min	Summer	4.241		0.0		7.4	748		
2160	min	Summer	3.209		0.0		8.4	1100		
2880	min	Summer	2.633		0.0		9.2	1468		
4320	min	Summer	1.989		0.0	1	0.4	2188		
5760	min	Summer	1.628		0.0	1	1.3	2872		
7200	min	Summer	1.394		0.0	1	2.0	3664		
8640	min	Summer	1.227		0.0	1	2.6	4400		
10080	min	Summer	1.101		0.0	1	3.2	5136		
15	min	Winter	72.673		0.0		1.4	16		
		©198	2-2017	ХP	Solut	tions	5			

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 3 Pervious Paving.	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 3 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+35%)

	Storm		Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
		-	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min M	Winter	8.207	0.207	0.0	0.6	0.6	1.4	ΟK
60	min N	Winter	8.231	0.231	0.0	0.6	0.6	1.6	ОК
120	min M	Winter	8.223	0.223	0.0	0.6	0.6	1.5	ОК
180	min N	Winter	8.203	0.203	0.0	0.6	0.6	1.4	ΟK
240	min N	Winter	8.183	0.183	0.0	0.5	0.5	1.2	ΟK
360	min M	Winter	8.149	0.149	0.0	0.5	0.5	0.9	ОК
480	min M	Winter	8.124	0.124	0.0	0.4	0.4	0.7	ОК
600	min M	Winter	8.105	0.105	0.0	0.4	0.4	0.6	ОК
720	min 1	Winter	8.090	0.090	0.0	0.4	0.4	0.4	ОК
960	min 1	Winter	8.070	0.070	0.0	0.3	0.3	0.3	ОК
1440	min M	Winter	8.048	0.048	0.0	0.2	0.2	0.1	ΟK
2160	min M	Winter	8.034	0.034	0.0	0.2	0.2	0.1	ОК
2880	min M	Winter	8.030	0.030	0.0	0.2	0.2	0.1	ОК
4320	min 1	Winter	8.025	0.025	0.0	0.1	0.1	0.0	ОК
5760	min 1	Winter	8.022	0.022	0.0	0.1	0.1	0.0	ОК
7200	min 1	Winter	8.020	0.020	0.0	0.1	0.1	0.0	ОК
8640	min M	Winter	8.019	0.019	0.0	0.1	0.1	0.0	ΟK
10080	min 1	Winter	8.017	0.017	0.0	0.1	0.1	0.0	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	51.518	0.0	2.0	27
60	min	Winter	34.923	0.0	2.8	46
120	min	Winter	22.569	0.0	3.6	82
180	min	Winter	17.334	0.0	4.2	118
240	min	Winter	14.329	0.0	4.7	152
360	min	Winter	10.919	0.0	5.3	216
480	min	Winter	8.989	0.0	5.9	278
600	min	Winter	7.724	0.0	6.3	338
720	min	Winter	6.821	0.0	6.7	398
960	min	Winter	5.602	0.0	7.3	512
1440	min	Winter	4.241	0.0	8.3	738
2160	min	Winter	3.209	0.0	9.4	1104
2880	min	Winter	2.633	0.0	10.3	1464
4320	min	Winter	1.989	0.0	11.6	2200
5760	min	Winter	1.628	0.0	12.7	2920
7200	min	Winter	1.394	0.0	13.5	3672
8640	min	Winter	1.227	0.0	14.2	4264
10080	min	Winter	1.101	0.0	14.8	5128

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 3 Pervious Paving.	4
AB10 1XB		- Com
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 3 Perviou	Checked by JMA	Drainage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	100 Cv (Summer) 0	.750
Region Scotla	nd and Ireland Cv (Winter) 0	.840
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Summer Storms	Yes Climate Change %	+35
Tin	- Pe Area Diagram	
110		
Tota	ai Area (na) U.UIU	
Ti Fr	.me (mins) Area om: To: (ha)	
	0 4 0.010	
©1982-	-2017 XP Solutions	

Model Details

Storage is Online Cover Level (m) 8.800

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	11.0
Max Percolation (l/s)	7.6	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.000	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 8.000

©1982-2017 XP Solutions

Cameron & R	OSS									Page	1
15 Victoria	Str	eet			2103	821 - C	airston	Road No	orth		-
Aberdeen					Plot	3 Per	vious Pa	ving.		4	8.00
AB10 1XB								-			Jun
Date 06/03/	2024				Desi	aned h	τ <i>Σ</i>			- Micr	
	-2027 D	1	D		Char		y OPHA			Drai	nade
File ZIU3ZI	- P	LOT 3	Pervi	.ou	Cnec	скеа ру	JMA			Constitute Descended in	
CADS					Sour	ce Con	trol 201	7.1.2			
	Sum	mary c	of Res	ults :	for 20)0 year	Return	Period	(+35%)	1	
				Half Dı	cain Ti	.me : 29	minutes.				
	a b c c						NF =	NF		C b a b a b a b a b a b a b a b a b a b a b a b a b a b	
	Stori	n L	Max	Max	M	ax 	Max Combrol N	Max	Max	Status	
	Lven	C C	(m)	Deptn (m)	(1	ration ((1/e)	(1/e)	(m ³)		
			(111)	(111)	(1	, 3)	(1/3)	(1/3)	(111)		
15	min	Summer	8.174	0.174		0.0	0.5	0.5	1.1	ΟK	
30	min	Summer	8.215	0.215		0.0	0.6	0.6	1.5	ОК	
60	min	Summer	8.245	0.245		0.0	0.6	0.6	1.7	ΟK	
120	min	Summer	8.248	0.248		0.0	0.6	0.6	1.7	ΟK	
180	min	Summer	8.236	0.236		0.0	0.6	0.6	1.6	ΟK	
240	min	Summer	8.222	0.222		0.0	0.6	0.6	1.5	ΟK	
360	min	Summer	8.195	0.195		0.0	0.6	0.6	1.3	ОК	
480	min	Summer	8.172	0.172		0.0	0.5	0.5	1.1	ОК	
600	min	Summer	8.153	0.153		0.0	0.5	0.5	1.0	OK	
720	min	Summor	0.130 9 113	0.130		0.0	0.5	0.5	0.0	OK	
1440	min	Summer	8 083	0.113		0.0	0.4	0.4	0.0	0 K	
2160	min	Summer	8 060	0.000		0.0	0.3	0.5	0.1	0 K	
2880	min	Summer	8.046	0.046		0.0	0.2	0.2	0.1	0 K	
4320	min	Summer	8.034	0.034		0.0	0.2	0.2	0.1	ΟK	
5760	min	Summer	8.029	0.029		0.0	0.1	0.1	0.0	ОК	
7200	min	Summer	8.026	0.026		0.0	0.1	0.1	0.0	ОК	
8640	min	Summer	8.024	0.024		0.0	0.1	0.1	0.0	ΟK	
10080	min	Summer	8.023	0.023		0.0	0.1	0.1	0.0	ΟK	
15	min	Winter	8.194	0.194		0.0	0.6	0.6	1.3	ΟK	
			~ .		_ ·						
			Storm		Rain	F.Tooded	Discharg	e Time-P	eak		
			rvent	()	mm/hr)	Volume	Volume	(min:	5)		
						(m°)	(m°)				
		15	min Su	mmer	83.965	0.0	1.	4	16		
		30	min Su	mmer	59.880	0.0	2.	1	26		
		60	min Su	mmer	40.721	0.0	2.	9	44		
		120	min Su	mmer	26.227	0.0	3.	8	78		
		180	min Su	mmer	20.088	0 0) 4	4	112		

	Even	t	(mm/hr)	Volume (m³)	Volume (m³)	(mins)	
15	min	Summer	83.965	0.0	1.4	16	
30	min	Summer	59.880	0.0	2.1	26	
60	min	Summer	40.721	0.0	2.9	44	
120	min	Summer	26.227	0.0	3.8	78	
180	min	Summer	20.088	0.0	4.4	112	
240	min	Summer	16.566	0.0	4.8	144	
360	min	Summer	12.577	0.0	5.5	208	
480	min	Summer	10.324	0.0	6.0	270	
600	min	Summer	8.850	0.0	6.5	332	
720	min	Summer	7.800	0.0	6.8	392	
960	min	Summer	6.386	0.0	7.5	512	
1440	min	Summer	4.811	0.0	8.4	750	
2160	min	Summer	3.624	0.0	9.5	1104	
2880	min	Summer	2.964	0.0	10.4	1468	
4320	min	Summer	2.228	0.0	11.6	2188	
5760	min	Summer	1.817	0.0	12.6	2936	
7200	min	Summer	1.550	0.0	13.4	3648	
8640	min	Summer	1.361	0.0	14.1	4392	
10080	min	Summer	1.219	0.0	14.6	4960	
15	min	Winter	83.965	0.0	1.6	16	
		©198	32-2017	XP Solı	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 3 Pervious Paving.	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 3 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 200 year Return Period (+35%)

	Storm Event	n 5	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min 1	Winter	8.242	0.242	0.0	0.6	0.6	1.7	ОК
60	min N	Winter	8.273	0.273	0.0	0.7	0.7	1.9	ΟK
120	min N	Winter	8.267	0.267	0.0	0.7	0.7	1.9	ОК
180	min 1	Winter	8.245	0.245	0.0	0.6	0.6	1.7	ОК
240	min N	Winter	8.222	0.222	0.0	0.6	0.6	1.5	ΟK
360	min N	Winter	8.182	0.182	0.0	0.5	0.5	1.2	ОК
480	min N	Winter	8.152	0.152	0.0	0.5	0.5	0.9	ОК
600	min M	Winter	8.128	0.128	0.0	0.4	0.4	0.8	ΟK
720	min N	Winter	8.110	0.110	0.0	0.4	0.4	0.6	ОК
960	min N	Winter	8.085	0.085	0.0	0.4	0.4	0.4	ОК
1440	min M	Winter	8.058	0.058	0.0	0.3	0.3	0.2	ОК
2160	min M	Winter	8.039	0.039	0.0	0.2	0.2	0.1	ΟK
2880	min M	Winter	8.033	0.033	0.0	0.2	0.2	0.1	ΟK
4320	min M	Winter	8.027	0.027	0.0	0.1	0.1	0.0	ОК
5760	min M	Winter	8.024	0.024	0.0	0.1	0.1	0.0	ОК
7200	min M	Winter	8.022	0.022	0.0	0.1	0.1	0.0	ОК
8640	min M	Winter	8.020	0.020	0.0	0.1	0.1	0.0	ΟK
10080	min 1	Winter	8.019	0.019	0.0	0.1	0.1	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	59.880	0.0	2.4	28
60	min	Winter	40.721	0.0	3.3	46
120	min	Winter	26.227	0.0	4.3	84
180	min	Winter	20.088	0.0	4.9	118
240	min	Winter	16.566	0.0	5.4	152
360	min	Winter	12.577	0.0	6.2	218
480	min	Winter	10.324	0.0	6.8	280
600	min	Winter	8.850	0.0	7.3	342
720	min	Winter	7.800	0.0	7.7	400
960	min	Winter	6.386	0.0	8.4	520
1440	min	Winter	4.811	0.0	9.5	750
2160	min	Winter	3.624	0.0	10.7	1096
2880	min	Winter	2.964	0.0	11.6	1456
4320	min	Winter	2.228	0.0	13.1	2200
5760	min	Winter	1.817	0.0	14.2	2864
7200	min	Winter	1.550	0.0	15.1	3624
8640	min	Winter	1.361	0.0	15.8	4336
10080	min	Winter	1.219	0.0	16.5	5088

Cameron & Ross			Page 3
15 Victoria Street	210321 - Ca	irston Road North	
Aberdeen	Plot 3 Perv	ious Paving.	L
AB10 1XB			Micco
Date 06/03/2024	Designed by	JMA	Desinado
File 210321 - Plot 3 Perviou	Checked by d	JMA	Diamaye
CADS	Source Cont:	rol 2017.1.2	
Ra	infall Detai	ls	
Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	200	Cv (Summer)	0.750
Region Scotla	nd and Ireland	Cv (Winter)	0.840
M5-60 (mm)	13.000	Shortest Storm (mins)	15
Ratio R	0.250	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+35

Time Area Diagram

Total Area (ha) 0.010

Time	(mins)	Area
From:	To:	(ha)

0 4 0.010

Model Details

Storage is Online Cover Level (m) 8.800

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	11.0
Max Percolation (l/s)	7.6	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.000	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 8.000

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcaipago
File 210321 - Plot 4 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 8 minutes.

	Stor	n	Max	Max	Max	Max	Max	Max	Status
	Event	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	8 849	0 049	0 0	0.2	0.2	0 1	ОК
30	min	Summor	8 859	0.045	0.0	0.2	0.2	0.1	0 K
50	min	Summor	0.000	0.059	0.0	0.3	0.3	0.2	OK
120	min	Summor	0.004	0.004	0.0	0.3	0.3	0.2	OK
120	min	Cummen	0.002	0.002	0.0	0.3	0.3	0.2	OK
100	m±n	Summer	0.057	0.057	0.0	0.3	0.3	0.2	0 K
240	min	Summer	8.852	0.052	0.0	0.3	0.3	0.2	0 K
360	mın	Summer	8.844	0.044	0.0	0.2	0.2	0.1	ΟK
480	min	Summer	8.838	0.038	0.0	0.2	0.2	0.1	ОК
600	min	Summer	8.835	0.035	0.0	0.2	0.2	0.1	ΟK
720	min	Summer	8.833	0.033	0.0	0.2	0.2	0.1	ΟK
960	min	Summer	8.829	0.029	0.0	0.1	0.1	0.0	ΟK
1440	min	Summer	8.825	0.025	0.0	0.1	0.1	0.0	ОК
2160	min	Summer	8.822	0.022	0.0	0.1	0.1	0.0	ОК
2880	min	Summer	8.820	0.020	0.0	0.1	0.1	0.0	ОК
4320	min	Summer	8.816	0.016	0.0	0.1	0.1	0.0	ОК
5760	min	Summer	8.815	0.015	0.0	0.1	0.1	0.0	ОК
7200	min	Summer	8.814	0.014	0.0	0.0	0.0	0.0	ОК
8640	min	Summer	8.813	0.013	0.0	0.0	0.0	0.0	ОК
10080	min	Summer	8.813	0.013	0.0	0.0	0.0	0.0	ОК
15	min	Winter	8.855	0.055	0.0	0.3	0.3	0.2	ОК
								• • =	5

	Stor	m	Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	19.000	0.0	0.2	14	
30	min	Summer	13.218	0.0	0.4	22	
60	min	Summer	8.918	0.0	0.6	38	
120	min	Summer	5.920	0.0	0.8	70	
180	min	Summer	4.641	0.0	1.0	102	
240	min	Summer	3.903	0.0	1.1	132	
360	min	Summer	3.055	0.0	1.3	190	
480	min	Summer	2.569	0.0	1.5	250	
600	min	Summer	2.246	0.0	1.6	308	
720	min	Summer	2.013	0.0	1.8	368	
960	min	Summer	1.694	0.0	2.0	490	
1440	min	Summer	1.326	0.0	2.4	726	
2160	min	Summer	1.034	0.0	2.8	1096	
2880	min	Summer	0.866	0.0	3.1	1464	
4320	min	Summer	0.675	0.0	3.6	2192	
5760	min	Summer	0.566	0.0	3.9	2936	
7200	min	Summer	0.494	0.0	4.2	3584	
8640	min	Summer	0.441	0.0	4.5	4248	
10080	min	Summer	0.401	0.0	4.7	4968	
15	min	Winter	19.000	0.0	0.3	14	
		©198	32-2017	XP Sol	utions		
Cameron & Ross		Page 2					
------------------------------	------------------------------	------------					
15 Victoria Street	210321 - Cairston Road North						
Aberdeen	Plot 4 Pervious Paving	L.					
AB10 1XB		Micco					
Date 06/03/2024	Designed by JMA	Desipado					
File 210321 - Plot 4 Perviou	Checked by JMA	Dialitiage					
CADS	Source Control 2017.1.2						

Summary of Results for 1 year Return Period

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min V	Winter	8.864	0.064	0.0	0.3	0.3	0.2	ОК
60	min V	Winter	8.866	0.066	0.0	0.3	0.3	0.2	ОК
120	min V	Winter	8.859	0.059	0.0	0.3	0.3	0.2	ΟK
180	min V	Winter	8.850	0.050	0.0	0.3	0.3	0.1	ΟK
240	min V	Winter	8.844	0.044	0.0	0.2	0.2	0.1	ΟK
360	min V	Winter	8.835	0.035	0.0	0.2	0.2	0.1	ΟK
480	min V	Winter	8.831	0.031	0.0	0.2	0.2	0.1	ΟK
600	min V	Winter	8.829	0.029	0.0	0.1	0.1	0.0	ΟK
720	min V	Winter	8.827	0.027	0.0	0.1	0.1	0.0	ОК
960	min V	Winter	8.824	0.024	0.0	0.1	0.1	0.0	ΟK
1440	min V	Winter	8.821	0.021	0.0	0.1	0.1	0.0	ОК
2160	min V	Winter	8.818	0.018	0.0	0.1	0.1	0.0	ОК
2880	min V	Winter	8.816	0.016	0.0	0.1	0.1	0.0	ΟK
4320	min V	Winter	8.814	0.014	0.0	0.0	0.0	0.0	ОК
5760	min V	Winter	8.813	0.013	0.0	0.0	0.0	0.0	ОК
7200	min V	Winter	8.812	0.012	0.0	0.0	0.0	0.0	ОК
8640	min V	Winter	8.811	0.011	0.0	0.0	0.0	0.0	ΟK
10080	min V	Winter	8.811	0.011	0.0	0.0	0.0	0.0	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	13.218	0.0	0.4	23
60	min	Winter	8.918	0.0	0.7	42
120	min	Winter	5.920	0.0	0.9	74
180	min	Winter	4.641	0.0	1.1	104
240	min	Winter	3.903	0.0	1.3	134
360	min	Winter	3.055	0.0	1.5	188
480	min	Winter	2.569	0.0	1.7	246
600	min	Winter	2.246	0.0	1.9	306
720	min	Winter	2.013	0.0	2.0	368
960	min	Winter	1.694	0.0	2.3	492
1440	min	Winter	1.326	0.0	2.7	732
2160	min	Winter	1.034	0.0	3.1	1092
2880	min	Winter	0.866	0.0	3.5	1464
4320	min	Winter	0.675	0.0	4.0	2188
5760	min	Winter	0.566	0.0	4.5	2760
7200	min	Winter	0.494	0.0	4.8	3632
8640	min	Winter	0.441	0.0	5.1	4120
10080	min	Winter	0.401	0.0	5.4	5064

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	4
AB10 1XB		Magan
Date 06/03/2024	Designed by JMA	MILIU
File 210321 - Plot 4 Perviou	Checked by JMA	Dialinage
CADS	Source Control 2017.1.2	
Ré	ainfall Details	
Rainfall Model Return Period (years) Region Scotl M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms 1 Cv (Summer) 0. and and Ireland Cv (Winter) 0. 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10 Yes Climate Change %	Yes 750 840 15 080 +0
Ti	me Area Diagram	
Tot	al Area (ha) 0.011	
T F	'ime (mins) Area rom: To: (ha)	
	0 4 0.011	

Cameron & Ross		F	age 4						
15 Victoria Street	210321 - Cairston Road N	orth [(
Aberdeen	Plot 4 Pervious Paving		L						
AB10 1XB			Micco						
Date 06/03/2024	Designed by JMA		Desinado						
File 210321 - Plot 4 Perviou	Checked by JMA		Dialitiaye						
CADS	Source Control 2017.1.2								
<u> </u>	Model Details								
Storage is Online Cover Level (m) 9.600									
Porous	Car Park Structure								
Infiltration Coefficient Base	(m/hr) 0.00000	Vidth (m)	2.5						

2.5	Width (m)	0.00000	nfiltration Coefficient Base (m/nr)
13.0	Length (m)	1000	Membrane Percolation (mm/hr)
150.0	Slope (1:X)	9.0	Max Percolation (l/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (m)	8.800	Invert Level (m)

Orifice Outflow Control

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 4 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Half Drain Time : 15 minutes.

Storm		n	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(l/s)	(m³)	
15	min	Gummor	0 000	0 080	0 0	03	03	0.4	0 K
20	min i	Cummor	0.000	0.000	0.0	0.3	0.3	0.4	0 K
50	min i	Gumman	0.095	0.095	0.0	0.4	0.4	0.5	OK
100	min :	Summer	0.900	0.100	0.0	0.4	0.4	0.0	O K
120	min :	summer	8.89/	0.097	0.0	0.4	0.4	0.5	OK
180	min :	Summer	8.891	0.091	0.0	0.4	0.4	0.5	0 K
240	min :	Summer	8.884	0.084	0.0	0.3	0.3	0.4	ОК
360	min :	Summer	8.873	0.073	0.0	0.3	0.3	0.3	ОК
480	min :	Summer	8.865	0.065	0.0	0.3	0.3	0.2	ΟK
600	min :	Summer	8.857	0.057	0.0	0.3	0.3	0.2	ΟK
720	min :	Summer	8.851	0.051	0.0	0.3	0.3	0.1	ОК
960	min :	Summer	8.843	0.043	0.0	0.2	0.2	0.1	ОК
1440	min :	Summer	8.834	0.034	0.0	0.2	0.2	0.1	ОК
2160	min :	Summer	8.828	0.028	0.0	0.1	0.1	0.0	ОК
2880	min :	Summer	8.825	0.025	0.0	0.1	0.1	0.0	ОК
4320	min :	Summer	8.821	0.021	0.0	0.1	0.1	0.0	ОК
5760	min :	Summer	8.819	0.019	0.0	0.1	0.1	0.0	ОК
7200	min :	Summer	8.817	0.017	0.0	0.1	0.1	0.0	ОК
8640	min :	Summer	8.816	0.016	0.0	0.1	0.1	0.0	ОК
10080	min :	Summer	8.815	0.015	0.0	0.1	0.1	0.0	ОК
15	min T	Winter	8.887	0.087	0 0	0.4	0 4	0.4	0 K
10			0.007	0.007	0.0	0.1	0.1	0.1	0 10

	Stor	m	Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	33.317	0.0	0.5	15	
30	min	Summer	23.154	0.0	0.8	23	
60	min	Summer	15.530	0.0	1.1	40	
120	min	Summer	10.149	0.0	1.5	74	
180	min	Summer	7.867	0.0	1.8	106	
240	min	Summer	6.555	0.0	2.0	136	
360	min	Summer	5.058	0.0	2.3	198	
480	min	Summer	4.204	0.0	2.6	256	
600	min	Summer	3.641	0.0	2.8	316	
720	min	Summer	3.236	0.0	3.0	376	
960	min	Summer	2.686	0.0	3.3	492	
1440	min	Summer	2.065	0.0	3.8	734	
2160	min	Summer	1.587	0.0	4.4	1076	
2880	min	Summer	1.317	0.0	4.9	1468	
4320	min	Summer	1.011	0.0	5.6	2200	
5760	min	Summer	0.838	0.0	6.1	2936	
7200	min	Summer	0.725	0.0	6.5	3632	
8640	min	Summer	0.643	0.0	6.9	4352	
10080	min	Summer	0.582	0.0	7.2	4968	
15	min	Winter	33.317	0.0	0.6	15	
		©198	32-2017	XP Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 4 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

	Storm Event	1 :	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	- (m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min V	Winter	8.900	0.100	0.0	0.4	0.4	0.6	ОК
60	min V	Winter	8.905	0.105	0.0	0.4	0.4	0.6	ОК
120	min V	Winter	8.897	0.097	0.0	0.4	0.4	0.5	ОК
180	min V	Winter	8.887	0.087	0.0	0.4	0.4	0.4	ОК
240	min V	Winter	8.877	0.077	0.0	0.3	0.3	0.3	ОК
360	min V	Winter	8.862	0.062	0.0	0.3	0.3	0.2	ОК
480	min V	Winter	8.851	0.051	0.0	0.3	0.3	0.1	ОК
600	min V	Winter	8.843	0.043	0.0	0.2	0.2	0.1	ОК
720	min V	Winter	8.837	0.037	0.0	0.2	0.2	0.1	ОК
960	min V	Winter	8.832	0.032	0.0	0.2	0.2	0.1	ОК
1440	min V	Winter	8.827	0.027	0.0	0.1	0.1	0.0	ОК
2160	min V	Winter	8.823	0.023	0.0	0.1	0.1	0.0	ОК
2880	min V	Winter	8.821	0.021	0.0	0.1	0.1	0.0	ОК
4320	min V	Winter	8.817	0.017	0.0	0.1	0.1	0.0	ОК
5760	min V	Winter	8.815	0.015	0.0	0.1	0.1	0.0	ОК
7200	min V	Winter	8.814	0.014	0.0	0.0	0.0	0.0	ОК
8640	min V	Winter	8.813	0.013	0.0	0.0	0.0	0.0	ΟK
10080	min V	Winter	8.813	0.013	0.0	0.0	0.0	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	23.154	0.0	0.9	25
60	min	Winter	15.530	0.0	1.3	44
120	min	Winter	10.149	0.0	1.7	78
180	min	Winter	7.867	0.0	2.0	112
240	min	Winter	6.555	0.0	2.2	142
360	min	Winter	5.058	0.0	2.6	202
480	min	Winter	4.204	0.0	2.9	260
600	min	Winter	3.641	0.0	3.2	318
720	min	Winter	3.236	0.0	3.4	376
960	min	Winter	2.686	0.0	3.7	492
1440	min	Winter	2.065	0.0	4.3	732
2160	min	Winter	1.587	0.0	5.0	1076
2880	min	Winter	1.317	0.0	5.5	1424
4320	min	Winter	1.011	0.0	6.3	2132
5760	min	Winter	0.838	0.0	6.9	2984
7200	min	Winter	0.725	0.0	7.4	3552
8640	min	Winter	0.643	0.0	7.8	4296
10080	min	Winter	0.582	0.0	8.2	4976

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	L
AB10 1XB		Micro
Date 06/03/2024	Designed by JMA	Drainago
File 210321 - Plot 4 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
CADS Rainfall Model Return Period (years) Region Scotlan M5-60 (mm) Ratio R Summer Storms <u>Time</u> Total Total	Source Control 2017.1.2 nfall Details FSR Winter Storms 10 Cv (Summer) 0. d and Ireland Cv (Winter) 0. 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10 Yes Climate Change % e Area Diagram 1 Area (ha) 0.011 me (mins) Area m: To: (ha) 0 4 0.011	Yes 750 840 15 0080 +0

Cameron & Ross		Page 4				
15 Victoria Street	210321 - Cairston Road North					
Aberdeen	Plot 4 Pervious Paving	L				
AB10 1XB		Micco				
Date 06/03/2024	Designed by JMA					
File 210321 - Plot 4 Perviou	Checked by JMA	Drainage				
CADS	Source Control 2017.1.2					
Model Details						
Storage is Online Cover Level (m) 9.600						
Porous	Car Park Structure					
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	2.5				

0.00000	Width (m)	2.5
1000	Length (m)	13.0
9.0	Slope (1:X)	150.0
2.0	Depression Storage (mm)	5
0.30	Evaporation (mm/day)	3
8.800	Membrane Depth (m)	0
	0.00000 1000 9.0 2.0 0.30 8.800	0.00000 Width (m) 1000 Length (m) 9.0 Slope (1:X) 2.0 Depression Storage (mm) 0.30 Evaporation (mm/day) 8.800 Membrane Depth (m)

Orifice Outflow Control

Cameron &	Ross									Page	1
15 Victoria Street 210321 - Cairston Road North									5		
Aberdeen Plot 4 Pervious P							avina		4		
AB10 1YB											Zm
ABIO IXB	. /	٨			Deed		TN(7)			- Micr	0
Date 06/0.	8/202	4			Desi	gnea b	у ЈМА			Drai	папе
File 21032	21 -	Plot 4	Pervi	.ou	Chec	ked by	JMA			Cici	nage
CADS					Sour	ce Con	trol 201	17.1.2			
	Su	mmary	of Rea	sults	for 3	0 year	Return	Period	(+35%)	_	
				Half D	rain Ti	.me : 25	minutes.				
	Sto	rm	Max	Max	Ma	×	Max	Max	Max	Status	
	Eve	nt	Level	Depth	Infilt	ration	Control D	Outflow	Volume		
	_		(m)	(m)	(1,	/s)	(1/s)	(1/s)	(m ³)		
	15 mir	Summer	8.922	0.122		0.0	0.4	0.4	0.8	ΟK	
	30 mir	Summer	8.945	0.145		0.0	0.5	0.5	1.0	ОК	
	60 mir.	Summer	8.961	0.161		0.0	0.5	0.5	1.2	OK	
	20 min	Summer	8.962	0.162		0.0	0.5	0.5	1.2	ОК	
	80 min 40 min	Summer	8.954	0.134		0.0	0.5	0.5	1.1	OK	
2	40 MIIA 60 mir	Summer	0.940	0.129		0.0	0.5	0.5	1.0	OK	
1	00 IIIII. 80 mir	Summer	0.920 8 917	0.120		0.0	0.4	0.4	0.0	OK	
	00 mir	Summer	8 903	0 103		0.0	0.4	0.4	0.7	0 K	
7	20 mir	Summer	8.893	0.093		0.0	0.4	0.4	0.5	0 K	
9	60 mir	Summer	8.879	0.079		0.0	0.3	0.3	0.4	ΟK	
14	40 mir	Summer	8.860	0.060		0.0	0.3	0.3	0.2	ΟK	
21	60 mir	Summer	8.843	0.043		0.0	0.2	0.2	0.1	ΟK	
28	80 mir	Summer	8.835	0.035		0.0	0.2	0.2	0.1	ΟK	
43	20 mir	Summer	8.829	0.029		0.0	0.1	0.1	0.0	0 K	
57	60 mir	Summer	8.826	0.026		0.0	0.1	0.1	0.0	ΟK	
72	00 mir	Summer	8.823	0.023		0.0	0.1	0.1	0.0	ΟK	
86	40 mir	Summer	8.822	0.022		0.0	0.1	0.1	0.0	ΟK	
100	80 mir	Summer	8.820	0.020		0.0	0.1	0.1	0.0	ΟK	
	15 min	Winter	8.934	0.134		0.0	0.5	0.5	0.9	ОК	
			Storm		Rain	Flooded	l Discharg	ge Time-P	eak		
			Event	(mm/hr)	Volume	Volume	min:	s)		
						(m³)	(m³)				
		15	min Su	mmer	56.548	0 0) 1	. 0	16		
		30	min Su	ummer	39.673	0.0) 1	.5	25		
		60	min Su	mmer	26.745	0.0) 2.	.0	42		
		120	min Su	ummer	17.385	0.0) 2	.7	76		
		180	min Su	mmer	13.417	0.0) 3	.1	110		
		240	min Su	ummer	11.137	0.0) 3	.5	142		
		360	min Su	mmer	8.542	0 0) 4	0	206		

				(m³)	(m³)	
15	min	Summer	56.548	0.0	1.0	16
30	min	Summer	39.673	0.0	1.5	25
60	min	Summer	26.745	0.0	2.0	42
120	min	Summer	17.385	0.0	2.7	76
180	min	Summer	13.417	0.0	3.1	110
240	min	Summer	11.137	0.0	3.5	142
360	min	Summer	8.542	0.0	4.0	206
480	min	Summer	7.068	0.0	4.5	266
600	min	Summer	6.098	0.0	4.8	326
720	min	Summer	5.403	0.0	5.1	386
960	min	Summer	4.463	0.0	5.7	504
1440	min	Summer	3.406	0.0	6.5	738
2160	min	Summer	2.598	0.0	7.4	1100
2880	min	Summer	2.144	0.0	8.1	1468
4320	min	Summer	1.634	0.0	9.3	2200
5760	min	Summer	1.346	0.0	10.1	2936
7200	min	Summer	1.158	0.0	10.8	3608
8640	min	Summer	1.024	0.0	11.4	4280
10080	min	Summer	0.923	0.0	11.9	4984
15	min	Winter	56.548	0.0	1.1	16

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 4 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+35%)

	Storm	n	Max	Max	Max	Max	Max	Max	Status
	Lvent	-	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min N	Winter	8.960	0.160	0.0	0.5	0.5	1.1	ОК
60	min N	Winter	8.976	0.176	0.0	0.5	0.5	1.3	ОК
120	min N	Winter	8.970	0.170	0.0	0.5	0.5	1.2	ΟK
180	min N	Winter	8.956	0.156	0.0	0.5	0.5	1.1	ОК
240	min N	Winter	8.941	0.141	0.0	0.5	0.5	1.0	ΟK
360	min N	Winter	8.917	0.117	0.0	0.4	0.4	0.7	ΟK
480	min N	Winter	8.898	0.098	0.0	0.4	0.4	0.5	ΟK
600	min N	Winter	8.885	0.085	0.0	0.4	0.4	0.4	ΟK
720	min N	Winter	8.874	0.074	0.0	0.3	0.3	0.3	ОК
960	min N	Winter	8.858	0.058	0.0	0.3	0.3	0.2	ΟK
1440	min N	Winter	8.841	0.041	0.0	0.2	0.2	0.1	ΟK
2160	min N	Winter	8.832	0.032	0.0	0.2	0.2	0.1	ΟK
2880	min N	Winter	8.828	0.028	0.0	0.1	0.1	0.0	ΟK
4320	min N	Winter	8.824	0.024	0.0	0.1	0.1	0.0	ОК
5760	min N	Winter	8.821	0.021	0.0	0.1	0.1	0.0	ОК
7200	min N	Winter	8.819	0.019	0.0	0.1	0.1	0.0	ОК
8640	min N	Winter	8.817	0.017	0.0	0.1	0.1	0.0	ΟK
10080	min N	Winter	8.816	0.016	0.0	0.1	0.1	0.0	ΟK

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	39.673	0.0	1.7	26
60	min	Winter	26.745	0.0	2.3	46
120	min	Winter	17.385	0.0	3.0	82
180	min	Winter	13.417	0.0	3.5	118
240	min	Winter	11.137	0.0	3.9	150
360	min	Winter	8.542	0.0	4.5	214
480	min	Winter	7.068	0.0	5.0	276
600	min	Winter	6.098	0.0	5.4	334
720	min	Winter	5.403	0.0	5.8	392
960	min	Winter	4.463	0.0	6.4	508
1440	min	Winter	3.406	0.0	7.3	736
2160	min	Winter	2.598	0.0	8.3	1092
2880	min	Winter	2.144	0.0	9.2	1468
4320	min	Winter	1.634	0.0	10.4	2188
5760	min	Winter	1.346	0.0	11.4	2880
7200	min	Winter	1.158	0.0	12.2	3600
8640	min	Winter	1.024	0.0	12.9	4344
10080	min	Winter	0.923	0.0	13.5	4928

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	4
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 4 Perviou	Checked by JMA	Dialitage
CADS	Source Control 2017.1.2	

Rainfall Details

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	30	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	13.000	Shortest Storm (mins)	15
Ratio R	0.250	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+35

Time Area Diagram

Total Area (ha) 0.011

Time	(mins)	Area
From:	To:	(ha)

0 4 0.011

Model Details

Storage is Online Cover Level (m) 9.600

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	13.0
Max Percolation (1/s)	9.0	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.800	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 8.800

Cameron & Ross							Page 1
15 Victoria Street		21032	21 - C	airston B	Road No	rth	
Aberdeen		Plot	4 Per	vious Pav	zina		4
AP10 1VP	~~~~						
	- Micro						
Date 06/03/2024		Desig	gned b	у ЈМА			Drainage
File 210321 - Plot 4	Perviou	Check	ked by	JMA			Diamage
CADS		Sourc	ce Con	trol 2017	7.1.2		
Summary c	f Results f	or 100	0 year	Return	Period	(+35%))
							-
	Half Dr	ain Tim	ne : 30	minutes.			
Storm	Max Max	Ma	x	Max	Max	Max	Status
Event	Level Depth	Infiltr	ation (Control E	Outflow	Volume	
	(m) (m)	(1/:	s)	(1/s)	(l/s)	(m³)	
15 min Summer	8.952 0.152		0.0	0.5	0.5	1.1	ОК
30 min Summer	8.985 0.185		0.0	0.5	0.5	1.4	0 K
60 min Summer	9.009 0.209		0.0	0.6	0.6	1.6	0 K
120 min Summer	9.012 0.212		0.0	0.6	0.6	1.6	ОК
180 min Summer	9.004 0.204		0.0	0.6	0.6	1.6	ОК
240 min Summer	8.993 0.193		0.0	0.6	0.6	1.5	0 K
360 min Summer	8.972 0.172		0.0	0.5	0.5	1.3	0 K
480 min Summer	8.953 0.153		0.0	0.5	0.5	1.1	0 K
600 min Summer	8.938 0.138		0.0	0.5	0.5	0.9	O K
720 min Summer	8.925 0.125		0.0	0.4	0.4	0.8	0 K
960 min Summer	8.905 0.105		0.0	0.4	0.4	0.6	ОК
1440 min Summer	8.879 0.079		0.0	0.3	0.3	0.4	OK
2160 min Summer	8.85/ 0.05/		0.0	0.3	0.3	0.2	OK
4320 min Summer	8 833 0 033		0.0	0.2	0.2	0.1	OK
5760 min Summer	8.829 0.029		0.0	0.1	0.1	0.0	0 K
7200 min Summer	8.826 0.026		0.0	0.1	0.1	0.0	0 K
8640 min Summer	8.824 0.024		0.0	0.1	0.1	0.0	O K
10080 min Summer	8.823 0.023		0.0	0.1	0.1	0.0	ОК
15 min Winter	8.968 0.168		0.0	0.5	0.5	1.2	O K
	Storm 1	Rain	Flooded	l Discharge	e Time-Pe	eak	
1	Event (m	m/hr)	Volume	Volume	(mins)	
			(m³)	(m³)			
15	min Summer 7	2 673	0 0	1 3	2	16	
30	min Summer 5	1 518	0.0	20)	26	
60	min Summer 3	4.923	0.0	2.0	7	44	
120	min Summer 2	2.569	0.0	3.6	5	78	
180	min Summer 1	7.334	0.0	4.1		112	
240	min Summer 1	4.329	0.0	4.5	5	146	
360	min Summer 1	0.919	0.0	5.2		208	
480	min Summer	8.989	0.0	5.7		270	
600	min Summer	7.724	0.0	6.2	2	332	
720	min Summer	6.821	0.0	6.5	5	392	
960	min Summer	5.602	0.0	7.2		512	
1440	min Summer	4.241	0.0	8.1	-	750	

3.209

2.633

1.989

1.628

1.394

1.227

1.101

72.673

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2017 XP Solutions

9.2

10.1

11.4

12.3

13.1

13.8

14.4

1.5

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

15 min Winter

10080 min Summer

1104

1468

2172

2912

3608

4368

4968

16

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 4 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+35%)

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min M	Winter	9.006	0.206	0.0	0.6	0.6	1.6	ОК
60	min N	Winter	9.031	0.231	0.0	0.6	0.6	1.8	ΟK
120	min M	Winter	9.028	0.228	0.0	0.6	0.6	1.8	ОК
180	min 1	Winter	9.012	0.212	0.0	0.6	0.6	1.6	ОК
240	min N	Winter	8.994	0.194	0.0	0.6	0.6	1.5	ΟK
360	min M	Winter	8.962	0.162	0.0	0.5	0.5	1.2	ОК
480	min M	Winter	8.937	0.137	0.0	0.5	0.5	0.9	ОК
600	min M	Winter	8.917	0.117	0.0	0.4	0.4	0.7	ОК
720	min N	Winter	8.902	0.102	0.0	0.4	0.4	0.6	ΟK
960	min M	Winter	8.880	0.080	0.0	0.3	0.3	0.4	ОК
1440	min M	Winter	8.855	0.055	0.0	0.3	0.3	0.2	ОК
2160	min M	Winter	8.838	0.038	0.0	0.2	0.2	0.1	ОК
2880	min M	Winter	8.832	0.032	0.0	0.2	0.2	0.1	ОК
4320	min 1	Winter	8.827	0.027	0.0	0.1	0.1	0.0	ОК
5760	min 1	Winter	8.824	0.024	0.0	0.1	0.1	0.0	ОК
7200	min M	Winter	8.821	0.021	0.0	0.1	0.1	0.0	ΟK
8640	min 1	Winter	8.820	0.020	0.0	0.1	0.1	0.0	ΟK
10080	min 1	Winter	8.818	0.018	0.0	0.1	0.1	0.0	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	51.518	0.0	2.2	28
60	min	Winter	34.923	0.0	3.1	46
120	min	Winter	22.569	0.0	4.0	84
180	min	Winter	17.334	0.0	4.6	120
240	min	Winter	14.329	0.0	5.1	154
360	min	Winter	10.919	0.0	5.9	218
480	min	Winter	8.989	0.0	6.4	282
600	min	Winter	7.724	0.0	6.9	344
720	min	Winter	6.821	0.0	7.4	404
960	min	Winter	5.602	0.0	8.1	520
1440	min	Winter	4.241	0.0	9.1	748
2160	min	Winter	3.209	0.0	10.4	1088
2880	min	Winter	2.633	0.0	11.3	1464
4320	min	Winter	1.989	0.0	12.8	2140
5760	min	Winter	1.628	0.0	13.9	2936
7200	min	Winter	1.394	0.0	14.8	3544
8640	min	Winter	1.227	0.0	15.6	4360
10080	min	Winter	1.101	0.0	16.3	5072

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	Y.
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 4 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model Return Period (years) Region Scotla: M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms 100 Cv (Summer) 0. nd and Ireland Cv (Winter) 0. 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10 Yes Climate Change %	Yes 750 840 15 0080 +35
Tin	ne Area Diagram	
Tota	al Area (ha) 0.011	
Ti	me (mins) Area	
Fre	om: To: (ha)	
	0 4 0.011	
©1982-	2017 XP Solutions	

Cameron & Ross						
15 Victoria Street	210321 - Cairston Road North					
Aberdeen	Plot 4 Pervious Paving	L				
AB10 1XB		Micco				
Date 06/03/2024	Designed by JMA	Dcaipage				
File 210321 - Plot 4 Perviou	Checked by JMA	Dialitage				
CADS	Source Control 2017.1.2					
Model Details						
Storage is On	nline Cover Level (m) 9.600					

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	13.0
Max Percolation (1/s)	9.0	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.800	Membrane Depth (m)	0

Orifice Outflow Control

Cameron & R	OSS								Page 1	-
15 Victoria										
Aberdeen				Plot	: 4 Per	vious Pa	ving		L.	
AB10 1XB									Micco	m
Date 06/03/	2024			Desi	.gned b	y JMA			Dcain	
File 210321	- Plot 4	Pervi	ou	Chec	ked by	JMA			DIGIL	laye
CADS				Sour	ce Con	trol 201	7.1.2			
	Summary o	of Res	ults f	Eor 20)0 year	Return	Period	(+35%)	<u>)</u>	
			Half Dr	ain Ti	.me : 34	minutes.				
	Storm	Max	Max	Ma	ах	Max	Max	Max	Status	
	Event	Level	Depth	Infilt	ration	Control E	Outflow	Volume		
		(m)	(m)	(1,	/s)	(1/s)	(l/s)	(m³)		
15	min Summer	8 973	0 173		0 0	0 5	0 5	1 3	ΟK	
30	min Summer	9.014	0.214		0.0	0.6	0.6	1.7	ОК	
60	min Summer	9.044	0.244		0.0	0.6	0.6	2.0	ОК	
120	min Summer	9.050	0.250		0.0	0.6	0.6	2.0	ОК	
180	min Summer	9.041	0.241		0.0	0.6	0.6	1.9	ОК	
240	min Summer	9.029	0.229		0.0	0.6	0.6	1.8	ОК	
360	min Summer	9.004	0.204		0.0	0.6	0.6	1.6	ΟK	
480	min Summer	8.983	0.183		0.0	0.5	0.5	1.4	ΟK	
600	min Summer	8.965	0.165		0.0	0.5	0.5	1.2	ОК	
720	min Summer	8.949	0.149		0.0	0.5	0.5	1.0	ΟK	
960	min Summer	8.925	0.125		0.0	0.4	0.4	0.8	ОК	
1440	min Summer	8.893	0.093		0.0	0.4	0.4	0.5	ОК	
2160	min Summer	8.868	0.068		0.0	0.3	0.3	0.3	ОК	
2880	min Summer	8.853	0.053		0.0	0.3	0.3	0.2	OK	
4320	min Summer	8.836	0.036		0.0	0.2	0.2	0.1	OK	
3760	min Summer	0.031	0.031		0.0	0.2	0.2	0.1	OK	
8640	min Summer	0.020 8.826	0.020		0.0	0.1	0.1	0.0	0 K	
10080	min Summer	8.824	0.024		0.0	0.1	0.1	0.0	O K	
15	min Winter	8.992	0.192		0.0	0.6	0.6	1.4	0 K	
		Storm Event	(1	Rain mm/hr)	Flooded	l Discharg Volume	e Time-P (mins	eak		
					(m³)	(m³)				
	15	min Su	mmer 8	83.965	0.0	1.	6	16		
	30	min Su	mmer !	59.880	0.0	2.	3	27		
	60	min Su	mmer 4	40.721	0.0	3.	2	44		
	120	min Su	mmer 2	26.227	0.0	4.	2	78		
	180	min Su	mmer 2	20.088	0.0	4.	8	112		
	240	min Su	mmer 3	16.566	0.0	5.	3	146		
	360	min Su	mmer 1	12.577	0.0	6.	0	210		
	480	min Su	mmer 1	10.324	0.0	6.	6	274		
	600	min Su	mmer	8.850	0.0	7.	1	334		
	720	min Su	mmer	/.800	0.0	7.	5	396		
	960	min Su	mmer	6.386	0.0	8.	2	518		
	1440	min Su	mmer	4.811	0.0	9.	3 E 1	152		
	2160	min Su	nmer	3.624	0.0	10.	J 1	104 160		
	288U	min Su	mmor	2.904	0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ч I 9 0	400 140		
	4320	min Su	mmor	2.220	0.0	12. 10	0 2	14U 020		
	7200	min Su	mmer	1.550	0.0	, 13. 14	0 Z 7 3	520 672		

©1982-2017 XP Solutions

0.0

0.0

0.0

0.0

3672

4280

5120

16

14.7

15.4

16.1

1.8

1.550

1.361

1.219

83.965

7200 min Summer

8640 min Summer

10080 min Summer

15 min Winter

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 4 Perviou	Checked by JMA	Dialitatje
CADS	Source Control 2017.1.2	

Summary of Results for 200 year Return Period (+35%)

	Storm	n -	Max	Max	Max	Max	Max S Outflow	Max	Status
	Lvent	-	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min	Winter	9.039	0.239	0.0	0.6	0.6	1.9	ОК
60	min	Winter	9.071	0.271	0.0	0.7	0.7	2.2	ОК
120	min	Winter	9.071	0.271	0.0	0.7	0.7	2.2	ОК
180	min	Winter	9.053	0.253	0.0	0.6	0.6	2.0	ОК
240	min	Winter	9.033	0.233	0.0	0.6	0.6	1.8	ОК
360	min	Winter	8.996	0.196	0.0	0.6	0.6	1.5	ОК
480	min	Winter	8.966	0.166	0.0	0.5	0.5	1.2	ОК
600	min	Winter	8.943	0.143	0.0	0.5	0.5	1.0	ОК
720	min	Winter	8.924	0.124	0.0	0.4	0.4	0.8	ОК
960	min	Winter	8.897	0.097	0.0	0.4	0.4	0.5	ОК
1440	min	Winter	8.866	0.066	0.0	0.3	0.3	0.2	ОК
2160	min	Winter	8.844	0.044	0.0	0.2	0.2	0.1	ОК
2880	min	Winter	8.835	0.035	0.0	0.2	0.2	0.1	ОК
4320	min	Winter	8.829	0.029	0.0	0.1	0.1	0.0	ОК
5760	min	Winter	8.825	0.025	0.0	0.1	0.1	0.0	ОК
7200	min	Winter	8.823	0.023	0.0	0.1	0.1	0.0	ОК
8640	min	Winter	8.821	0.021	0.0	0.1	0.1	0.0	ΟK
10080	min	Winter	8.820	0.020	0.0	0.1	0.1	0.0	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	59.880	0.0	2.6	29
60	min	Winter	40.721	0.0	3.6	48
120	min	Winter	26.227	0.0	4.7	84
180	min	Winter	20.088	0.0	5.4	120
240	min	Winter	16.566	0.0	5.9	156
360	min	Winter	12.577	0.0	6.8	222
480	min	Winter	10.324	0.0	7.4	284
600	min	Winter	8.850	0.0	8.0	346
720	min	Winter	7.800	0.0	8.4	406
960	min	Winter	6.386	0.0	9.2	528
1440	min	Winter	4.811	0.0	10.4	752
2160	min	Winter	3.624	0.0	11.7	1104
2880	min	Winter	2.964	0.0	12.8	1452
4320	min	Winter	2.228	0.0	14.4	2132
5760	min	Winter	1.817	0.0	15.6	2896
7200	min	Winter	1.550	0.0	16.5	3552
8640	min	Winter	1.361	0.0	17.4	4376
10080	min	Winter	1.219	0.0	18.1	5048

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 4 Pervious Paving	4
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 4 Perviou	Checked by JMA	Dialiaye
CADS	Source Control 2017.1.2	
Da Da	intall Detaile	

Rainfall Details

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	200	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	13.000	Shortest Storm (mins)	15
Ratio R	0.250	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+35

Time Area Diagram

Total Area (ha) 0.011

Time	(mins)	Area
From:	To:	(ha)

0 4 0.011

Model Details

Storage is Online Cover Level (m) 9.600

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	13.0
Max Percolation (1/s)	9.0	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.800	Membrane Depth (m)	0

Orifice Outflow Control

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 5 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 5 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 6 minutes.

	Storm	n	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	8,943	0.043	0.0	0.2	0.2	0.1	ОК
30	min	Summer	8,951	0.051	0.0	0.3	0.3	0.1	ОК
60	min	Summer	8.956	0.056	0.0	0.3	0.3	0.2	ОК
120	min	Summer	8,953	0.053	0.0	0.3	0.3	0.2	0 K
180	min	Summer	8.947	0.047	0.0	0.2	0.2	0.1	ОК
240	min	Summer	8.943	0.043	0.0	0.2	0.2	0.1	ОК
360	min	Summer	8.936	0.036	0.0	0.2	0.2	0.1	ОК
480	min	Summer	8.933	0.033	0.0	0.2	0.2	0.1	ОК
600	min	Summer	8.931	0.031	0.0	0.2	0.2	0.1	ОК
720	min	Summer	8.929	0.029	0.0	0.1	0.1	0.0	ОК
960	min	Summer	8.926	0.026	0.0	0.1	0.1	0.0	ОК
1440	min	Summer	8.922	0.022	0.0	0.1	0.1	0.0	ОК
2160	min	Summer	8.919	0.019	0.0	0.1	0.1	0.0	ОК
2880	min	Summer	8.917	0.017	0.0	0.1	0.1	0.0	ΟK
4320	min	Summer	8.914	0.014	0.0	0.0	0.0	0.0	ОК
5760	min	Summer	8.913	0.013	0.0	0.0	0.0	0.0	ОК
7200	min	Summer	8.913	0.013	0.0	0.0	0.0	0.0	ОК
8640	min	Summer	8.912	0.012	0.0	0.0	0.0	0.0	ОК
10080	min	Summer	8.911	0.011	0.0	0.0	0.0	0.0	ОК
15	min	Winter	8.948	0.048	0.0	0.2	0.2	0.1	O K

Rain	Flooded	Discharge	Time-Peak	
(mm/hr)	Volume	Volume	(mins)	
	(m³)	(m³)		
19.000	0.0	0.2	13	
13.218	0.0	0.3	22	
8.918	0.0	0.5	38	
5.920	0.0	0.7	70	
4.641	0.0	0.8	100	
3.903	0.0	0.9	130	
3.055	0.0	1.1	188	
2.569	0.0	1.2	248	
2.246	0.0	1.3	308	
2.013	0.0	1.5	368	
1.694	0.0	1.6	490	
1.326	0.0	1.9	734	
1.034	0.0	2.3	1100	
0.866	0.0	2.5	1424	
0.675	0.0	2.9	2128	
0.566	0.0	3.2	2896	
0.494	0,0	3.5	3552	
0.441	0.0	3 7	4312	
0 401	0.0	3.7	5136	
19 000	0.0	0.2	11	
T).000	0.0	0.2	14	
82-2017	XP Sol	utions		
	Rain (mm/hr) 19.000 13.218 8.918 5.920 4.641 3.903 3.055 2.569 2.246 2.013 1.694 1.326 1.034 0.866 0.675 0.566 0.494 0.441 0.401 19.000	Rain Flooded (mm/hr) Volume (m³) 19.000 0.0 13.218 0.0 8.918 0.0 5.920 0.0 4.641 0.0 3.903 0.0 2.569 0.0 2.246 0.0 2.013 0.0 1.694 0.0 1.326 0.0 0.675 0.0 0.566 0.0 0.494 0.0 0.401 0.0 0.401 0.0	Rain Flooded Discharge Vmlume Volume Volume (m³) (m³) 19.000 0.0 0.2 13.218 0.0 0.3 8.918 0.0 0.5 5.920 0.0 0.7 4.641 0.0 0.8 3.903 0.0 0.9 3.055 0.0 1.1 2.569 0.0 1.2 2.246 0.0 1.3 2.013 0.0 1.5 1.694 0.0 1.6 1.326 0.0 1.9 1.034 0.0 2.3 0.866 0.0 2.5 0.675 0.0 2.9 0.566 0.0 3.2 0.494 0.0 3.7 0.401 0.0 3.8 19.000 0.0 0.2	Rain Flooded Discharge Time-Peak (nm/hr) Volume Volume (mins) 19.000 0.0 0.2 13 13.218 0.0 0.3 22 8.918 0.0 0.5 38 5.920 0.0 0.7 70 4.641 0.0 0.8 100 3.903 0.0 0.9 130 3.055 0.0 1.1 188 2.569 0.0 1.2 248 2.246 0.0 1.3 308 2.013 0.0 1.5 368 1.694 0.0 1.6 490 1.326 0.0 1.9 734 1.034 0.0 2.3 1100 0.866 0.0 2.5 1424 0.675 0.0 2.9 2128 0.566 0.0 3.7 4312 0.401 0.0 3.8 5136 <td< td=""></td<>

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 5 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 5 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	-

Summary of Results for 1 year Return Period

	Storm Event	L	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min V	Vinter	8.955	0.055	0.0	0.3	0.3	0.2	ОК
60	min V	Vinter	8.956	0.056	0.0	0.3	0.3	0.2	ΟK
120	min V	Vinter	8.949	0.049	0.0	0.2	0.2	0.1	ОК
180	min V	Vinter	8.941	0.041	0.0	0.2	0.2	0.1	ОК
240	min V	Vinter	8.936	0.036	0.0	0.2	0.2	0.1	ОК
360	min V	Vinter	8.931	0.031	0.0	0.2	0.2	0.1	ΟK
480	min V	Vinter	8.927	0.027	0.0	0.1	0.1	0.0	ΟK
600	min V	Vinter	8.925	0.025	0.0	0.1	0.1	0.0	ΟK
720	min V	Vinter	8.924	0.024	0.0	0.1	0.1	0.0	ΟK
960	min V	Vinter	8.921	0.021	0.0	0.1	0.1	0.0	ΟK
1440	min V	Vinter	8.918	0.018	0.0	0.1	0.1	0.0	ОК
2160	min V	Vinter	8.915	0.015	0.0	0.1	0.1	0.0	ОК
2880	min V	Vinter	8.914	0.014	0.0	0.0	0.0	0.0	ОК
4320	min V	Vinter	8.913	0.013	0.0	0.0	0.0	0.0	ОК
5760	min V	Vinter	8.912	0.012	0.0	0.0	0.0	0.0	ОК
7200	min V	Vinter	8.911	0.011	0.0	0.0	0.0	0.0	ОК
8640	min V	Vinter	8.910	0.010	0.0	0.0	0.0	0.0	ΟK
10080	min V	Vinter	8.910	0.010	0.0	0.0	0.0	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
~ ~			10 010		0.4	
30	mın	Winter	13.218	0.0	0.4	23
60	min	Winter	8.918	0.0	0.5	40
120	min	Winter	5.920	0.0	0.8	72
180	min	Winter	4.641	0.0	0.9	102
240	min	Winter	3.903	0.0	1.0	128
360	min	Winter	3.055	0.0	1.2	188
480	min	Winter	2.569	0.0	1.4	248
600	min	Winter	2.246	0.0	1.5	306
720	min	Winter	2.013	0.0	1.6	374
960	min	Winter	1.694	0.0	1.9	478
1440	min	Winter	1.326	0.0	2.2	722
2160	min	Winter	1.034	0.0	2.6	1096
2880	min	Winter	0.866	0.0	2.8	1468
4320	min	Winter	0.675	0.0	3.3	2168
5760	min	Winter	0.566	0.0	3.6	2800
7200	min	Winter	0.494	0.0	3.9	3504
8640	min	Winter	0.441	0.0	4.2	4408
10080	min	Winter	0.401	0.0	4.4	5056

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 5 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 5 Perviou	Checked by JMA	Drainage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	1 Cv (Summer) 0	.750
Region Scotla	nd and Ireland Cv (Winter) 0	.840
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 1	0080
Summer Storms	Yes Climate Change %	+0
Tin	ne Area Diagram	
Tota	al Area (ha) 0.009	
Ti	me (mins) Area	
Fr	om: To: (ha)	
	0 4 0.009	

Cameron & Ross		Page 4
15 Victoria Street Aberdeen	210321 - Cairston Road North	4
AB10 1XB		Micro
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 5 Perviou	Checked by JMA	Dialitatje
CADS	Source Control 2017.1.2	
<u> </u>	Model Details	

Storage is Online Cover Level (m) 9.700

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	11.0
Max Percolation (l/s)	7.6	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.900	Membrane Depth (m)	0

Orifice Outflow Control

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 5 Pervious Paving	L
AB10 1XB		Micro
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 5 Perviou	Checked by JMA	Dialitage
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Half Drain Time : 12 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min S	Summer	8.971	0.071	0.0	0.3	0.3	0.3	ОК
30	min S	Summer	8,982	0.082	0.0	0.3	0.3	0.4	ОК
60	min S	Summer	8.987	0.087	0.0	0.4	0.4	0.4	ОК
120	min S	Summer	8,983	0.083	0.0	0.3	0.3	0.4	ОК
180	min S	Summer	8.976	0.076	0.0	0.3	0.3	0.3	ОК
240	min S	Summer	8.970	0.070	0.0	0.3	0.3	0.3	ОК
360	min S	Summer	8.960	0.060	0.0	0.3	0.3	0.2	ОК
480	min S	Summer	8.952	0.052	0.0	0.3	0.3	0.2	ОК
600	min S	Summer	8.946	0.046	0.0	0.2	0.2	0.1	ОК
720	min S	Summer	8.941	0.041	0.0	0.2	0.2	0.1	ОК
960	min S	Summer	8.935	0.035	0.0	0.2	0.2	0.1	ОК
1440	min S	Summer	8.929	0.029	0.0	0.1	0.1	0.0	ОК
2160	min S	Summer	8.925	0.025	0.0	0.1	0.1	0.0	ΟK
2880	min S	Summer	8.922	0.022	0.0	0.1	0.1	0.0	ΟK
4320	min S	Summer	8.919	0.019	0.0	0.1	0.1	0.0	ΟK
5760	min S	Summer	8.917	0.017	0.0	0.1	0.1	0.0	ОК
7200	min S	Summer	8.915	0.015	0.0	0.1	0.1	0.0	ΟK
8640	min S	Summer	8.914	0.014	0.0	0.0	0.0	0.0	ОК
10080	min S	Summer	8.914	0.014	0.0	0.0	0.0	0.0	ΟK
15	min V	Winter	8.977	0.077	0.0	0.3	0.3	0.3	ΟK

	Stor	m	Rain	Flo	oded	Discharge	Time-Peak	
	Event		(mm/hr)	Vol	ume	Volume	(mins)	
				(m	3)	(m³)		
		_						
15	min	Summer	33.317		0.0	0.4	14	
30	min	Summer	23.154		0.0	0.6	23	
60	min	Summer	15.530		0.0	0.9	40	
120	min	Summer	10.149		0.0	1.2	72	
180	min	Summer	7.867		0.0	1.4	104	
240	min	Summer	6.555		0.0	1.6	134	
360	min	Summer	5.058		0.0	1.9	194	
480	min	Summer	4.204		0.0	2.1	254	
600	min	Summer	3.641		0.0	2.3	314	
720	min	Summer	3.236		0.0	2.4	370	
960	min	Summer	2.686		0.0	2.7	490	
1440	min	Summer	2.065		0.0	3.1	734	
2160	min	Summer	1.587		0.0	3.6	1100	
2880	min	Summer	1.317		0.0	4.0	1444	
4320	min	Summer	1.011		0.0	4.5	2164	
5760	min	Summer	0.838		0.0	5.0	2864	
7200	min	Summer	0.725		0.0	5.3	3576	
8640	min	Summer	0.643		0.0	5.6	4368	
10080	min	Summer	0.582		0.0	5.9	4992	
15	min	Winter	33.317		0.0	0.5	15	
		©198	32-2017	ХP	Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 5 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcaipago
File 210321 - Plot 5 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min 1	Winter	8.988	0.088	0.0	0.4	0.4	0.4	ОК
60	min N	Winter	8.991	0.091	0.0	0.4	0.4	0.4	ОК
120	min M	Winter	8.981	0.081	0.0	0.3	0.3	0.4	ΟK
180	min M	Winter	8.971	0.071	0.0	0.3	0.3	0.3	ΟK
240	min 1	Winter	8.962	0.062	0.0	0.3	0.3	0.2	ΟK
360	min 1	Winter	8.949	0.049	0.0	0.2	0.2	0.1	ОК
480	min N	Winter	8.940	0.040	0.0	0.2	0.2	0.1	ΟK
600	min N	Winter	8.935	0.035	0.0	0.2	0.2	0.1	ΟK
720	min N	Winter	8.932	0.032	0.0	0.2	0.2	0.1	ΟK
960	min N	Winter	8.928	0.028	0.0	0.1	0.1	0.0	ΟK
1440	min M	Winter	8.924	0.024	0.0	0.1	0.1	0.0	ОК
2160	min M	Winter	8.921	0.021	0.0	0.1	0.1	0.0	ОК
2880	min M	Winter	8.918	0.018	0.0	0.1	0.1	0.0	ОК
4320	min M	Winter	8.915	0.015	0.0	0.1	0.1	0.0	ΟK
5760	min M	Winter	8.914	0.014	0.0	0.0	0.0	0.0	ОК
7200	min M	Winter	8.913	0.013	0.0	0.0	0.0	0.0	ОК
8640	min M	Winter	8.912	0.012	0.0	0.0	0.0	0.0	ΟK
10080	min N	Winter	8.912	0.012	0.0	0.0	0.0	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	23.154	0.0	0.7	24
60	min	Winter	15.530	0.0	1.0	42
120	min	Winter	10.149	0.0	1.4	76
180	min	Winter	7.867	0.0	1.6	108
240	min	Winter	6.555	0.0	1.8	138
360	min	Winter	5.058	0.0	2.1	196
480	min	Winter	4.204	0.0	2.4	254
600	min	Winter	3.641	0.0	2.6	308
720	min	Winter	3.236	0.0	2.8	368
960	min	Winter	2.686	0.0	3.1	488
1440	min	Winter	2.065	0.0	3.5	730
2160	min	Winter	1.587	0.0	4.1	1108
2880	min	Winter	1.317	0.0	4.5	1460
4320	min	Winter	1.011	0.0	5.1	2188
5760	min	Winter	0.838	0.0	5.6	2856
7200	min	Winter	0.725	0.0	6.0	3608
8640	min	Winter	0.643	0.0	6.4	4256
10080	min	Winter	0.582	0.0	6.7	5056

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 5 Pervious Paving	4
AB10 1XB		Jun
Date 06/03/2024	Designed by JMA	MICIO
File 210321 - Plot 5 Perviou	Checked by JMA	Urainage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	10 Cv (Summer) 0	.750
Region Scotla	nd and Ireland Cv (Winter) 0	.840
M5-60 (mm) Ratio R	13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 1(15
Summer Storms	Yes Climate Change %	+0
Tin	ne Area Diagram	
Tota	al Area (ha) 0.009	
Ti Fr	ime (mins) Area om: To: (ha)	
	0 4 0.009	
©1982-	-2017 XP Solutions	

Model Details

Storage is Online Cover Level (m) 9.700

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	11.0
Max Percolation (1/s)	7.6	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.900	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 8.900

Cameron & Ross							Page 1	
15 Victoria Stre			210321 - 0	'airston B	oad Nor	+h		
	2							
Aberdeen Plot 5 Pervious Paving								m
AB10 1XB	Mirrr							
Date 06/03/2024			Designed b	y JMA			Dcain	200
File 210321 - Pl	Digili	aye						
CADS			Source Cor	trol 2017	.1.2			
Sum	mary of Res	sults f	or 30 year	Return P	eriod (·	+35%)		
	7		4					
		Half Dra	ain Time : 19	minutes.				
Storm	Max	Max	Max	Max	Max	Max	Status	
Event	Level	Depth I	infiltration	Control E C	Outflow V	olume		
	(m)	(m)	(1/s)	(1/s)	(l/s)	(m³)		
15 min (Summor 9 010	0 110	0 0	0 1	0 1	0 6	0 K	
30 min 9	Summer 9 031	0.110	0.0	0.4	0.4	0.0	0 K	
60 min 8	Summer 9.043	0.143	0.0	0.5	0.5	0.9	O K	
120 min s	Summer 9.041	0.141	0.0	0.5	0.5	0.9	0 K	
180 min 8	Summer 9.032	0.132	0.0	0.5	0.5	0.8	0 K	
240 min 8	Summer 9.022	0.122	0.0	0.4	0.4	0.7	0 K	
360 min 8	Summer 9.006	0.106	0.0	0.4	0.4	0.6	O K	
480 min 8	Summer 8.992	0.092	0.0	0.4	0.4	0.5	0 K	
600 min \$	Summer 8.982	0.082	0.0	0.3	0.3	0.4	ОК	
720 min 3	Summer 8.974	0.074	0.0	0.3	0.3	0.3	ОК	
960 min 3	Summer 8.962	0.062	0.0	0.3	0.3	0.2	ОК	
1440 min 3	Summer 8.946	0.046	0.0	0.2	0.2	0.1	ОК	
2160 min \$	Summer 8.935	0.035	0.0	0.2	0.2	0.1	ОК	
2880 min \$	Summer 8.930	0.030	0.0	0.2	0.2	0.1	ΟK	
4320 min \$	Summer 8.925	0.025	0.0	0.1	0.1	0.0	ΟK	
5760 min \$	Summer 8.923	0.023	0.0	0.1	0.1	0.0	ΟK	
7200 min \$	Summer 8.921	0.021	0.0	0.1	0.1	0.0	ΟK	
8640 min \$	Summer 8.919	0.019	0.0	0.1	0.1	0.0	ΟK	
10080 min \$	Summer 8.918	0.018	0.0	0.1	0.1	0.0	ΟK	
15 min V	Winter 9.021	0.121	0.0	0.4	0.4	0.7	O K	
						_		
	Storm	R	ain Flooded	d Discharge	Time-Pea	ak		
	Event	(mr	m/hr) Volume (m³)	volume (m³)	(mins)			
	15 min Su	mmer 50	6 5 4 8 0 1))	1	15		
	30 min Su	mmer 30	9.673 0.0) 12	-	24		
	60 min Su	mmer 20	6.745 0 i) 17	2	12		
	120 min Su	mmer 1	7.385) 22		76		
	180 min Su	mmer 13	3.417 0.0	2.6	10)8		

	Even	t	(mm/hr)	Volume (m³)	Volume (m³)	(mins)
15	min	Summer	56.548	0.0	0.8	15
30	min	Summer	39.673	0.0	1.2	24
60	min	Summer	26.745	0.0	1.7	42
120	min	Summer	17.385	0.0	2.2	76
180	min	Summer	13.417	0.0	2.6	108
240	min	Summer	11.137	0.0	2.9	140
360	min	Summer	8.542	0.0	3.3	202
480	min	Summer	7.068	0.0	3.7	262
600	min	Summer	6.098	0.0	3.9	322
720	min	Summer	5.403	0.0	4.2	382
960	min	Summer	4.463	0.0	4.6	500
1440	min	Summer	3.406	0.0	5.3	736
2160	min	Summer	2.598	0.0	6.1	1088
2880	min	Summer	2.144	0.0	6.6	1452
4320	min	Summer	1.634	0.0	7.6	2200
5760	min	Summer	1.346	0.0	8.3	2920
7200	min	Summer	1.158	0.0	8.8	3552
8640	min	Summer	1.024	0.0	9.3	4392
10080	min	Summer	0.923	0.0	9.8	4968
15	min	Winter	56.548	0.0	0.9	15
		©198	32-2017	XP Solu	utions	

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 5 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 5 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+35%)

	Storm		Max	Max	Max	Max	Max	Max	Status
	Lvent	-	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min N	Winter	9.044	0.144	0.0	0.5	0.5	0.9	ОК
60	min N	Winter	9.056	0.156	0.0	0.5	0.5	1.0	ОК
120	min N	Winter	9.046	0.146	0.0	0.5	0.5	0.9	ΟK
180	min N	Winter	9.030	0.130	0.0	0.4	0.4	0.8	ОК
240	min N	Winter	9.015	0.115	0.0	0.4	0.4	0.6	ΟK
360	min N	Winter	8.993	0.093	0.0	0.4	0.4	0.5	ΟK
480	min N	Winter	8.977	0.077	0.0	0.3	0.3	0.3	ΟK
600	min N	Winter	8.965	0.065	0.0	0.3	0.3	0.2	ΟK
720	min N	Winter	8.956	0.056	0.0	0.3	0.3	0.2	ΟK
960	min N	Winter	8.944	0.044	0.0	0.2	0.2	0.1	ΟK
1440	min N	Winter	8.933	0.033	0.0	0.2	0.2	0.1	ΟK
2160	min N	Winter	8.928	0.028	0.0	0.1	0.1	0.0	ОК
2880	min N	Winter	8.925	0.025	0.0	0.1	0.1	0.0	ОК
4320	min N	Winter	8.921	0.021	0.0	0.1	0.1	0.0	ОК
5760	min N	Winter	8.918	0.018	0.0	0.1	0.1	0.0	ОК
7200	min N	Winter	8.917	0.017	0.0	0.1	0.1	0.0	ОК
8640	min N	Winter	8.915	0.015	0.0	0.1	0.1	0.0	ΟK
10080	min N	Winter	8.914	0.014	0.0	0.0	0.0	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	39.673	0.0	1.4	25
60	min	Winter	26.745	0.0	1.9	44
120	min	Winter	17.385	0.0	2.5	80
180	min	Winter	13.417	0.0	2.9	114
240	min	Winter	11.137	0.0	3.2	146
360	min	Winter	8.542	0.0	3.7	210
480	min	Winter	7.068	0.0	4.1	268
600	min	Winter	6.098	0.0	4.4	326
720	min	Winter	5.403	0.0	4.7	384
960	min	Winter	4.463	0.0	5.2	498
1440	min	Winter	3.406	0.0	6.0	712
2160	min	Winter	2.598	0.0	6.8	1084
2880	min	Winter	2.144	0.0	7.5	1452
4320	min	Winter	1.634	0.0	8.5	2184
5760	min	Winter	1.346	0.0	9.3	2872
7200	min	Winter	1.158	0.0	10.0	3632
8640	min	Winter	1.024	0.0	10.5	4496
10080	min	Winter	0.923	0.0	11.0	5120

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 5 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 5 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R	infall Details FSR Winter Storms 30 Cv (Summer) 0. nd and Ireland Cv (Winter) 0. 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10	Yes 750 840 15 0080
Summer Storms	Yes Climate Change %	+35
 Tin	ne Area Diagram	
Tota	al Area (ha) 0.009	
Ti	me (mins) Area	
Fr	om: To: (ha)	
	0 4 0.009	
©1982-	-2017 XP Solutions	

Model Details

Storage is Online Cover Level (m) 9.700

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	11.0
Max Percolation (l/s)	7.6	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.900	Membrane Depth (m)	0

Orifice Outflow Control

Cameron & R	OSS							Page	1
15 Victoria	Street		2103	321 - C	Cairston	Road No	orth		
Aberdeen			Plot	5 Per	vious Pa	vina		4	
AB10 1YB					12040 24	• =9			m
$\frac{\text{ABIO} \text{IXB}}{\text{Dato} 06/02/}$	2024		Dogi	anod h	TMA			- Micr	0
Dale 06/03/	2024		Desi	.gnea c	DY UMA			Drai	лапе
File 210321	- Plot 5	Perviou	. Chec	cked by	7 JMA				.ege
CADS			Sour	ce Con	trol 201	7.1.2			
	_								
	Summary o	of Results	for 10)0 year	r Return	Period	(+35%))	
		Half I)rain Ti	me • 24	minutes				
		IIall I			milliuces.				
	Storm	Max Max	Ma	ax	Max	Max	Max	Status	
	Event	Level Depth	Infilt	ration	Control Σ	Outflow	Volume		
		(m) (m)	(1	/s)	(1/s)	(1/s)	(m³)		
15	min Summer	9.037 0.137		0.0	0.5	0.5	0.8	ОК	
30	min Summer	9.067 0.167		0.0	0.5	0.5	1.1	ОК	
60	min Summer	9.087 0.187		0.0	0.5	0.5	1.2	ОК	
120	min Summer	9.086 0.186	j	0.0	0.5	0.5	1.2	ΟK	
180	min Summer	9.076 0.176	5	0.0	0.5	0.5	1.1	ΟK	
240	min Summer	9.064 0.164		0.0	0.5	0.5	1.0	O K	
360	min Summer	9.042 0.142		0.0	0.5	0.5	0.9	ΟK	
480	min Summer	9.025 0.125	, ,	0.0	0.4	0.4	0.7	ΟK	
600	min Summer	9.011 0.111		0.0	0.4	0.4	0.6	ΟK	
720	min Summer	8.999 0.099)	0.0	0.4	0.4	0.5	ΟK	
960	min Summer	8.982 0.082		0.0	0.3	0.3	0.4	ΟK	
1440	min Summer	8.961 0.061		0.0	0.3	0.3	0.2	ОК	
2160	min Summer	8.944 0.044		0.0	0.2	0.2	0.1	OK	
2880	min Summer	8.935 0.035)	0.0	0.2	0.2	0.1	OK	
4320	min Summer	8.929 0.029)	0.0	0.1	0.1	0.0	OK	
5760	min Summer	8.925 0.025)	0.0	0.1	0.1	0.0	0 K	
7200	min Summer	8.923 0.023)	0.0	0.1	0.1	0.0	OK	
10090	min Summor	8 920 0 020		0.0	0.1	0.1	0.0	OK	
15	min Winter	9.053 0.153	, }	0.0	0.5	0.5	1.0	0 K	
10	MIN WINCOI	5.000 0.100		0.0	0.0	0.0	1.0	0 10	
		Storm	Rain	Flooded	d Discharg	e Time-P	eak		
		Event	(mm/hr)	Volume	Volume	(mins	5)		
				(m³)	(m³)				
	15	min Summer	72.673	0.0	D 1.	1	16		
	30	min Summer	51.518	0.0) 1 .	6	25		
	60	min Summer	34.923	0.0	2.	2	42		
	120	min Summer	22.569	0.0	2.	9	76		
	180	min Summer	17.334	0.0	э з.	4	110		
	240	min Summer	14.329	0.0	э з.	7	142		
	360	min Summer	10.919	0.0	9 4.	3	206		
	480	min Summer	8.989	0.0	o 4.	7	266		
	600	min Summer	7.724	0.0	5.	U	326		
	720	min Summer	6.821	0.0	5.	3	386		
	960	mın Summer	5.602	0.0	J 5.	У	508		

1440 min Summer

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

15 min Winter

10080 min Summer

4.241

3.209

2.633

1.989

1.628

1.394

1.227

1.101

72.673

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2017 XP Solutions

6.7

7.5

8.2 9.3

10.1

10.7

11.3

11.8

1.2

738

1100

1460

2156

2880

3608

4400

5112

16

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 5 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 5 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+35%)

	Storm	1	Max Level	Max Depth	Max Infiltration	Max Control	Max E Outflow	Max	Status
	270110	-	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min 1	Winter	9.086	0.186	0.0	0.5	0.5	1.2	ОК
60	min N	Winter	9.106	0.206	0.0	0.6	0.6	1.4	ОК
120	min N	Winter	9.097	0.197	0.0	0.6	0.6	1.3	ОК
180	min N	Winter	9.078	0.178	0.0	0.5	0.5	1.2	ΟK
240	min N	Winter	9.060	0.160	0.0	0.5	0.5	1.0	ΟK
360	min N	Winter	9.029	0.129	0.0	0.4	0.4	0.8	ОК
480	min N	Winter	9.007	0.107	0.0	0.4	0.4	0.6	ОК
600	min N	Winter	8.990	0.090	0.0	0.4	0.4	0.4	ОК
720	min 1	Winter	8.977	0.077	0.0	0.3	0.3	0.3	ОК
960	min 1	Winter	8.960	0.060	0.0	0.3	0.3	0.2	ОК
1440	min M	Winter	8.942	0.042	0.0	0.2	0.2	0.1	ОК
2160	min M	Winter	8.932	0.032	0.0	0.2	0.2	0.1	ОК
2880	min M	Winter	8.928	0.028	0.0	0.1	0.1	0.0	ОК
4320	min 1	Winter	8.924	0.024	0.0	0.1	0.1	0.0	ОК
5760	min 1	Winter	8.921	0.021	0.0	0.1	0.1	0.0	ОК
7200	min 1	Winter	8.919	0.019	0.0	0.1	0.1	0.0	ОК
8640	min M	Winter	8.917	0.017	0.0	0.1	0.1	0.0	ΟK
10080	min 1	Winter	8.916	0.016	0.0	0.1	0.1	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	51.518	0.0	1.8	26
60	min	Winter	34.923	0.0	2.5	46
120	min	Winter	22.569	0.0	3.3	82
180	min	Winter	17.334	0.0	3.8	116
240	min	Winter	14.329	0.0	4.2	150
360	min	Winter	10.919	0.0	4.8	214
480	min	Winter	8.989	0.0	5.3	276
600	min	Winter	7.724	0.0	5.7	336
720	min	Winter	6.821	0.0	6.0	394
960	min	Winter	5.602	0.0	6.6	510
1440	min	Winter	4.241	0.0	7.5	736
2160	min	Winter	3.209	0.0	8.5	1088
2880	min	Winter	2.633	0.0	9.3	1460
4320	min	Winter	1.989	0.0	10.4	2164
5760	min	Winter	1.628	0.0	11.4	2888
7200	min	Winter	1.394	0.0	12.1	3640
8640	min	Winter	1.227	0.0	12.7	4200
10080	min	Winter	1.101	0.0	13.3	5136

Rainfall Details

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	13.000	Shortest Storm (mins)	15
Ratio R	0.250	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+35

Time Area Diagram

Total Area (ha) 0.009

Time	(mins)	Area
From:	To:	(ha)

0 4 0.009

Model Details

Storage is Online Cover Level (m) 9.700

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	11.0
Max Percolation (1/s)	7.6	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.900	Membrane Depth (m)	0

Orifice Outflow Control

Comoron 6 P	000									Page	1
	.055				0100			- 1		raye	1
15 Victoria	Sti	reet			2103	321 - Ca	airston	Road Nc	rth	5	
Aberdeen					Plot	5 Perv	vious Pa	ving		L'	4
AB10 1XB										Mice	Jun
Date 06/03/	2024	1			Desi	gned by	y JMA				U
File 210321	- F	Plot 5	Pervi	011	Chec	cked by	JMA			Ufall	nage
CADS			-		Sour	ce Cont	trol 201	7 1 2			
CADO					5001		201	1.1.2			
	Sum	mary c	of Res	11]+9	for 20	10 vear	Return	Period	(+35%))	
	bun	unary c	JI KCS	urts	101 20	JU YCAL	Recurn	ICIIOU	(1000)	<u>'</u>	
				Half D:	rain Ti	ime : 27	minutes.				
	Stor	m	Max	Max	м	ax	Max	Max	Max	Status	
	Ever	t	Level	Depth	Infilt	ration (Control E	Outflow	Volume		
			(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)		
		Company -	0 0 0 0	0 1 5 0		0.0	0 5	0 5	1 ^	0.77	
10) min	Summer	9.058	0.104		0.0	0.5	0.5	1.0	OK	
50) min	Summer	9.094	0.194		0.0	0.0	0.0	1.5	0 K	
120) min	Summer	9.120	0.220		0.0	0.6	0.6	1.5	0 K	
180) min	Summer	9.108	0.208		0.0	0.6	0.6	1.4	0 K	
240) min	Summer	9.095	0.195		0.0	0.6	0.6	1.3	ОК	
360) min	Summer	9.070	0.170		0.0	0.5	0.5	1.1	ОК	
480) min	Summer	9.050	0.150		0.0	0.5	0.5	0.9	O K	
600) min	Summer	9.033	0.133		0.0	0.5	0.5	0.8	ΟK	
720) min	Summer	9.019	0.119		0.0	0.4	0.4	0.7	ОК	
960) min	Summer	8.998	0.098		0.0	0.4	0.4	0.5	ОК	
2160) min	Summer	8.972	0.072		0.0	0.3	0.3	0.3	OK	
2880) min	Summer	8.940	0.040		0.0	0.2	0.2	0.2	0 K	
4320) min	Summer	8.931	0.031		0.0	0.2	0.2	0.1	ОК	
5760) min	Summer	8.927	0.027		0.0	0.1	0.1	0.0	ОК	
7200) min	Summer	8.925	0.025		0.0	0.1	0.1	0.0	ΟK	
8640) min	Summer	8.923	0.023		0.0	0.1	0.1	0.0	ΟK	
10080) min	Summer	8.921	0.021		0.0	0.1	0.1	0.0	O K	
15) min	Winter	9.076	0.176		0.0	0.5	0.5	1.1	ОК	
			Storm		Rain	Flooded	Discharg	e Time-P	eak		
			Event	(mm/hr)	Volume	Volume	(mins	 s)		
				,	,	(m ³)	(m ³)	、			
							• •	-			
		15	min Su	mmer	83.965	0.0	1.	3	16		
		30	min Su	mmer	59.880	0.0	1.	9 6	25		
		6U 120	min Su	ununer	4U./21	0.0	2.	0 4	42 78		
		180	min Su	ummer	20.088	0.0	3.	9	110		
		240	min Su	ummer	16.566	0.0	4.	3	144		
		360	min Su	mmer	12.577	0.0	4.	9	206		

60	min	Summer	40.721	0.	0 2	2.6	42
120	min	Summer	26.227	0.	о з	3.4	78
180	min	Summer	20.088	0.	о з	3.9	110
240	min	Summer	16.566	0.	D 4	1.3	144
360	min	Summer	12.577	0.	D 4	1.9	206
480	min	Summer	10.324	0.	D 5	5.4	268
600	min	Summer	8.850	0.	D 5	5.8	330
720	min	Summer	7.800	0.	0 6	5.1	390
960	min	Summer	6.386	0.	0 6	5.7	510
1440	min	Summer	4.811	0.	C C	7.6	748
2160	min	Summer	3.624	0.	8 C	3.5	1104
2880	min	Summer	2.964	0.	9 9	9.3	1468
4320	min	Summer	2.228	0.	0 10).4	2164
5760	min	Summer	1.817	0.	D 11	.3	2856
7200	min	Summer	1.550	0.) 12	2.0	3656
8640	min	Summer	1.361	0.) 12	2.6	4400
10080	min	Summer	1.219	0.	0 13	3.1	5032
15	min	Winter	83.965	0.	D 1	.4	16
		©198	82-2017	XP So	lutions		
Cameron & Ross		Page 2					
------------------------------	------------------------------	---------					
15 Victoria Street	210321 - Cairston Road North						
Aberdeen	Plot 5 Pervious Paving	L					
AB10 1XB		Micco					
Date 06/03/2024	Designed by JMA						
File 210321 - Plot 5 Perviou	Checked by JMA	Diamaye					
CADS	Source Control 2017.1.2						

Summary of Results for 200 year Return Period (+35%)

	Storm Event	n 5	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min 1	Winter	9.117	0.217	0.0	0.6	0.6	1.5	ОК
60	min N	Winter	9.143	0.243	0.0	0.6	0.6	1.7	ΟK
120	min M	Winter	9.135	0.235	0.0	0.6	0.6	1.6	ОК
180	min 1	Winter	9.114	0.214	0.0	0.6	0.6	1.5	ОК
240	min N	Winter	9.093	0.193	0.0	0.6	0.6	1.3	ΟK
360	min M	Winter	9.057	0.157	0.0	0.5	0.5	1.0	ОК
480	min M	Winter	9.030	0.130	0.0	0.4	0.4	0.8	ОК
600	min M	Winter	9.010	0.110	0.0	0.4	0.4	0.6	ОК
720	min N	Winter	8.994	0.094	0.0	0.4	0.4	0.5	ΟK
960	min M	Winter	8.973	0.073	0.0	0.3	0.3	0.3	ОК
1440	min M	Winter	8.950	0.050	0.0	0.3	0.3	0.1	ОК
2160	min M	Winter	8.935	0.035	0.0	0.2	0.2	0.1	ОК
2880	min M	Winter	8.930	0.030	0.0	0.2	0.2	0.1	ОК
4320	min 1	Winter	8.925	0.025	0.0	0.1	0.1	0.0	ОК
5760	min 1	Winter	8.922	0.022	0.0	0.1	0.1	0.0	ОК
7200	min M	Winter	8.920	0.020	0.0	0.1	0.1	0.0	ΟK
8640	min M	Winter	8.919	0.019	0.0	0.1	0.1	0.0	ΟK
10080	min 1	Winter	8.917	0.017	0.0	0.1	0.1	0.0	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	59.880	0.0	2.1	27
60	min	Winter	40.721	0.0	2.9	46
120	min	Winter	26.227	0.0	3.8	82
180	min	Winter	20.088	0.0	4.4	118
240	min	Winter	16.566	0.0	4.9	152
360	min	Winter	12.577	0.0	5.5	216
480	min	Winter	10.324	0.0	6.1	278
600	min	Winter	8.850	0.0	6.5	338
720	min	Winter	7.800	0.0	6.9	398
960	min	Winter	6.386	0.0	7.5	512
1440	min	Winter	4.811	0.0	8.5	738
2160	min	Winter	3.624	0.0	9.6	1100
2880	min	Winter	2.964	0.0	10.5	1440
4320	min	Winter	2.228	0.0	11.7	2164
5760	min	Winter	1.817	0.0	12.7	2848
7200	min	Winter	1.550	0.0	13.5	3560
8640	min	Winter	1.361	0.0	14.2	4376
10080	min	Winter	1.219	0.0	14.8	5000

Cameron & Ross		Page 3					
15 Victoria Street	210321 - Cairston Road North						
Aberdeen	Plot 5 Pervious Paving	L					
AB10 1XB		Micco					
Date 06/03/2024	Designed by JMA	Desipado					
File 210321 - Plot 5 Perviou	Checked by JMA	Diamaye					
CADS	Source Control 2017.1.2						
Rainfall Details							
Rainfall Model	FSR Winter Storms	Yes					
Return Period (years)	200 $C_{\rm W}$ (Summer) 0	750					

100	51 0001m0		2.011		Laff Hodor	1.04 211 2 04.	
0.750	(Summer)	Cv	200		od (years)	ırn Period	Return
0.840	(Winter)	Cv	Ireland	Scotland and	Region		
15	rm (mins)	Shortest Stor	13.000		45-60 (mm)	M2.	
10080	rm (mins)	Longest Stor	0.250		Ratio R		
+35	Change 🖇	Climate	Yes		mer Storms	Summe	

Time Area Diagram

Total Area (ha) 0.009

Time	(mins)	Area
From:	To:	(ha)

0 4 0.009

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 5 Pervious Paving	Le
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinage
File 210321 - Plot 5 Perviou	Checked by JMA	Dialitatje
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 9.700

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	11.0
Max Percolation (1/s)	7.6	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.900	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 8.900

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 6 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 8 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min :	Summer	9.543	0.043	0.0	0.2	0.2	0.1	ОК
30	min	Summer	9.552	0.052	0.0	0.3	0.3	0.2	0 K
60	min	Summer	9.556	0.056	0.0	0.3	0.3	0.2	0 K
120	min	Summer	9.553	0.053	0.0	0.3	0.3	0.2	ОК
180	min :	Summer	9.548	0.048	0.0	0.2	0.2	0.1	ΟK
240	min :	Summer	9.543	0.043	0.0	0.2	0.2	0.1	ОК
360	min :	Summer	9.536	0.036	0.0	0.2	0.2	0.1	ОК
480	min :	Summer	9.533	0.033	0.0	0.2	0.2	0.1	ОК
600	min :	Summer	9.531	0.031	0.0	0.2	0.2	0.1	ОК
720	min :	Summer	9.529	0.029	0.0	0.1	0.1	0.0	ОК
960	min :	Summer	9.526	0.026	0.0	0.1	0.1	0.0	ОК
1440	min :	Summer	9.522	0.022	0.0	0.1	0.1	0.0	ОК
2160	min :	Summer	9.519	0.019	0.0	0.1	0.1	0.0	ОК
2880	min :	Summer	9.517	0.017	0.0	0.1	0.1	0.0	ΟK
4320	min :	Summer	9.514	0.014	0.0	0.0	0.0	0.0	ОК
5760	min :	Summer	9.513	0.013	0.0	0.0	0.0	0.0	ΟK
7200	min :	Summer	9.513	0.013	0.0	0.0	0.0	0.0	ΟK
8640	min :	Summer	9.512	0.012	0.0	0.0	0.0	0.0	ΟK
10080	min :	Summer	9.512	0.012	0.0	0.0	0.0	0.0	ΟK
15	min N	Winter	9.549	0.049	0.0	0.2	0.2	0.1	ΟK

	Stor	m	Rain	Flo	oded	Discharge	Time-Peak	
	Event		(mm/hr)	Vol	ume	Volume	(mins)	
				(m	3)	(m³)		
15	min	Summer	19.000		0.0	0.2	13	
30	min	Summer	13.218		0.0	0.3	22	
60	min	Summer	8.918		0.0	0.5	38	
120	min	Summer	5.920		0.0	0.7	70	
180	min	Summer	4.641		0.0	0.8	100	
240	min	Summer	3.903		0.0	0.9	130	
360	min	Summer	3.055		0.0	1.1	188	
480	min	Summer	2.569		0.0	1.2	248	
600	min	Summer	2.246		0.0	1.4	308	
720	min	Summer	2.013		0.0	1.5	368	
960	min	Summer	1.694		0.0	1.6	490	
1440	min	Summer	1.326		0.0	1.9	718	
2160	min	Summer	1.034		0.0	2.3	1084	
2880	min	Summer	0.866		0.0	2.5	1432	
4320	min	Summer	0.675		0.0	2.9	2204	
5760	min	Summer	0.566		0.0	3.2	2904	
7200	min	Summer	0.494		0.0	3.5	3544	
8640	min	Summer	0.441		0.0	3.7	4408	
10080	min	Summer	0.401		0.0	3.9	5080	
15	min	Winter	19.000		0.0	0.2	14	
		©198	32-2017	ХP	Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 6 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min V	Winter	9.556	0.056	0.0	0.3	0.3	0.2	ОК
60	min V	Winter	9.557	0.057	0.0	0.3	0.3	0.2	ОК
120	min V	Winter	9.549	0.049	0.0	0.2	0.2	0.1	ΟK
180	min V	Winter	9.541	0.041	0.0	0.2	0.2	0.1	ОК
240	min V	Winter	9.536	0.036	0.0	0.2	0.2	0.1	ΟK
360	min V	Winter	9.531	0.031	0.0	0.2	0.2	0.1	ОК
480	min V	Winter	9.527	0.027	0.0	0.1	0.1	0.0	ОК
600	min V	Winter	9.525	0.025	0.0	0.1	0.1	0.0	ΟK
720	min V	Winter	9.524	0.024	0.0	0.1	0.1	0.0	ОК
960	min V	Winter	9.521	0.021	0.0	0.1	0.1	0.0	ОК
1440	min V	Winter	9.518	0.018	0.0	0.1	0.1	0.0	ΟK
2160	min V	Winter	9.515	0.015	0.0	0.1	0.1	0.0	ΟK
2880	min V	Winter	9.514	0.014	0.0	0.0	0.0	0.0	ОК
4320	min V	Winter	9.513	0.013	0.0	0.0	0.0	0.0	ОК
5760	min V	Winter	9.512	0.012	0.0	0.0	0.0	0.0	ОК
7200	min V	Winter	9.511	0.011	0.0	0.0	0.0	0.0	ОК
8640	min V	Winter	9.510	0.010	0.0	0.0	0.0	0.0	ΟK
10080	min V	Winter	9.510	0.010	0.0	0.0	0.0	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	13.218	0.0	0.4	23
60	min	Winter	8.918	0.0	0.5	40
120	min	Winter	5.920	0.0	0.8	72
180	min	Winter	4.641	0.0	0.9	102
240	min	Winter	3.903	0.0	1.0	128
360	min	Winter	3.055	0.0	1.2	188
480	min	Winter	2.569	0.0	1.4	248
600	min	Winter	2.246	0.0	1.5	308
720	min	Winter	2.013	0.0	1.7	376
960	min	Winter	1.694	0.0	1.9	484
1440	min	Winter	1.326	0.0	2.2	744
2160	min	Winter	1.034	0.0	2.6	1092
2880	min	Winter	0.866	0.0	2.9	1472
4320	min	Winter	0.675	0.0	3.3	2176
5760	min	Winter	0.566	0.0	3.7	2840
7200	min	Winter	0.494	0.0	4.0	3480
8640	min	Winter	0.441	0.0	4.2	4352
10080	min	Winter	0.401	0.0	4.4	5040

©1982-2017 XP Solutions

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 6 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	1 Cv (Summer) 0.	750
Region Scotla	nd and Ireland Cv (Winter) 0.	840
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 10	080
Summer Storms	Yes Climate Change %	+0
Tin	ne Area Diagram	

Total Area (ha) 0.009

Time	(mins)	Area
From:	To:	(ha)

0 4 0.009

©1982-2017 XP Solutions

Storage is Online Cover Level (m) 10.300

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	10.5
Max Percolation (l/s)	7.3	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	9.500	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 6 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Half Drain Time : 11 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
15	min :	Summer	9.571	0.071	0.0	0.3	0.3	0.3	ОК
30	min	Summer	9.583	0.083	0.0	0.3	0.3	0.4	0 K
60	min	Summer	9 588	0 088	0.0	0.4	0.9	0 4	0 K
120	min !	Summer	9 584	0 084	0.0	0.3	0.1	0 4	0 K
180	min	Summer	9.576	0.076	0.0	0.3	0.3	0.3	0 K
240	min	Summer	9.570	0.070	0.0	0.3	0.3	0.3	ОК
360	min	Summer	9.560	0.060	0.0	0.3	0.3	0.2	0 K
480	min	Summer	9.552	0.052	0.0	0.3	0.3	0.2	0 K
600	min	Summer	9.546	0.046	0.0	0.2	0.2	0.1	ОК
720	min :	Summer	9.541	0.041	0.0	0.2	0.2	0.1	ОК
960	min :	Summer	9.535	0.035	0.0	0.2	0.2	0.1	ОК
1440	min :	Summer	9.529	0.029	0.0	0.1	0.1	0.0	ОК
2160	min :	Summer	9.525	0.025	0.0	0.1	0.1	0.0	ОК
2880	min :	Summer	9.522	0.022	0.0	0.1	0.1	0.0	ОК
4320	min :	Summer	9.519	0.019	0.0	0.1	0.1	0.0	ОК
5760	min :	Summer	9.517	0.017	0.0	0.1	0.1	0.0	ОК
7200	min :	Summer	9.515	0.015	0.0	0.1	0.1	0.0	ОК
8640	min :	Summer	9.514	0.014	0.0	0.0	0.0	0.0	ОК
10080	min :	Summer	9.514	0.014	0.0	0.0	0.0	0.0	ОК
15	min N	Winter	9.578	0.078	0.0	0.3	0.3	0.3	ΟK

S	Storm		Rain	Floode	d Discharge	Time-Peak	
E	lven	t	(mm/hr)	Volume	volume	(mins)	
				(m³)	(m³)		
1.5		~		0			
15 r	mın	Summer	33.31/	0.	0 0.4	14	
30 r	min	Summer	23.154	0.	0 0.6	23	
60 r	min	Summer	15.530	0.	0 0.9	40	
120 r	min	Summer	10.149	0.	0 1.2	72	
180 r	min	Summer	7.867	0.	0 1.5	104	
240 r	min	Summer	6.555	0.	0 1.6	134	
360 r	min	Summer	5.058	0.	0 1.9	194	
480 r	min	Summer	4.204	0.	0 2.1	254	
600 r	min	Summer	3.641	0.	0 2.3	314	
720 r	min	Summer	3.236	0.	0 2.5	370	
960 r	min	Summer	2.686	0.	0 2.7	490	
1440 r	min	Summer	2.065	0.	0 3.1	734	
2160 r	min	Summer	1.587	0.	0 3.6	1100	
2880 r	min	Summer	1.317	0.	0 4.0	1440	
4320 r	min	Summer	1.011	0.	0 4.5	2132	
5760 r	min	Summer	0.838	0.	0 5.0	2912	
7200 r	min	Summer	0.725	0.	0 5.3	3664	
8640 m	min	Summer	0.643	0.1	0 5.7	4408	
10080 r	min	Summer	0.582	0.	0 5.9	5112	
_0000 r 1.5 m	min	Winter	33.317	0.	0 0.5	15	
10 1			00.01/	0.		10	
		©198	32-2017	XP So	lutions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 6 Perviou	Checked by JMA	Dialitatje
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min N	Winter	9.589	0.089	0.0	0.4	0.4	0.4	ОК
60	min N	Winter	9.592	0.092	0.0	0.4	0.4	0.4	ОК
120	min N	Winter	9.582	0.082	0.0	0.3	0.3	0.4	ΟK
180	min N	Winter	9.571	0.071	0.0	0.3	0.3	0.3	ОК
240	min N	Winter	9.562	0.062	0.0	0.3	0.3	0.2	ОК
360	min N	Winter	9.549	0.049	0.0	0.2	0.2	0.1	ОК
480	min N	Winter	9.540	0.040	0.0	0.2	0.2	0.1	ΟK
600	min N	Winter	9.535	0.035	0.0	0.2	0.2	0.1	ΟK
720	min N	Winter	9.532	0.032	0.0	0.2	0.2	0.1	ΟK
960	min N	Winter	9.528	0.028	0.0	0.1	0.1	0.0	ΟK
1440	min N	Winter	9.524	0.024	0.0	0.1	0.1	0.0	ΟK
2160	min N	Winter	9.521	0.021	0.0	0.1	0.1	0.0	O K
2880	min N	Winter	9.518	0.018	0.0	0.1	0.1	0.0	ΟK
4320	min N	Winter	9.515	0.015	0.0	0.1	0.1	0.0	ΟK
5760	min N	Winter	9.514	0.014	0.0	0.0	0.0	0.0	ΟK
7200	min N	Winter	9.513	0.013	0.0	0.0	0.0	0.0	ΟK
8640	min N	Winter	9.512	0.012	0.0	0.0	0.0	0.0	ОК
10080	min N	Winter	9.512	0.012	0.0	0.0	0.0	0.0	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	23.154	0.0	0.7	24
60	min	Winter	15.530	0.0	1.0	42
120	min	Winter	10.149	0.0	1.4	76
180	min	Winter	7.867	0.0	1.6	108
240	min	Winter	6.555	0.0	1.8	138
360	min	Winter	5.058	0.0	2.1	196
480	min	Winter	4.204	0.0	2.4	254
600	min	Winter	3.641	0.0	2.6	308
720	min	Winter	3.236	0.0	2.8	374
960	min	Winter	2.686	0.0	3.1	488
1440	min	Winter	2.065	0.0	3.5	730
2160	min	Winter	1.587	0.0	4.1	1076
2880	min	Winter	1.317	0.0	4.5	1460
4320	min	Winter	1.011	0.0	5.1	2140
5760	min	Winter	0.838	0.0	5.6	2896
7200	min	Winter	0.725	0.0	6.1	3672
8640	min	Winter	0.643	0.0	6.4	4352
10080	min	Winter	0.582	0.0	6.7	5000

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L
AB10 1XB		Micro
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 6 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Date 06/03/2024 File 210321 - Plot 6 Perviou CADS Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms <u>Tin</u> Tota Ti	Designed by JMA Checked by JMA Source Control 2017.1.2 infall Details FSR Winter Storms 10 Cv (Summer) 0 nd and Ireland Cv (Winter) 0 13.000 Shortest Storm (mins) 10 Yes Climate Change % ne Area Diagram al Area (ha) 0.009 me (mins) Area om: To: (ha) 0 4 0.009	Yes 750 840 15 0080 +0
©1982-	-2017 XP Solutions	

Caller Of U Galage 1 15 Victoria Street Aberdeen AB10 1XB Date 06/03/2024 File 210321 - Plot 6 Perviou Checked by JMA CADS CADS CADS CADS CADS CADS CADS CAD	ameron & Poss		Page /
<pre>Abriden Abridet Plot 6 Pervious Paving Abriden Abriden Abriden Abriden Plot 6 Pervious Paving Date 06/03/2024 File 210321 - Plot 6 Perviou Checked by JMA Checked b</pre>	5 Victoria Street	210321 - Cairston Road North	raye 4
ABIO 1XB Date 06/03/2024 File 210321 - Plot 6 Perviou CADS CADS Source Control 2017.1.2 <u>Model Details</u> Storage is Online Cover Level (m) 10.300 <u>Porous Car Park Structure</u> Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 2.5 Membrane Percolation (mm/hr) 1000 Length (m) 10.5 Max Percolation (1/s) 7.3 Slope (1:X) 150.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500 Membrane Depth (m) 0 <u>Orifice Outflow Control</u> Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500	perdeen	Plot 6 Pervious Paving	4
ADJO IND Date 06/03/2024 File 210321 - Plot 6 Perviou CADS CADS Source Control 2017.1.2 <u>Model Details</u> Storage is Online Cover Level (m) 10.300 <u>Porous Car Park Structure</u> Infiltration Coefficient Base (m/hr) 0.00000 Width (m) 2.5 Membrane Percolation (mm/hr) 1000 Length (m) 10.5 Max Percolation (1/s) 7.3 Slope (1:X) 150.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500 Membrane Depth (m) 0 <u>Orifice Outflow Control</u> Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500		FIOL O FELVIOUS FAVING	1 mm
File 210321 - Plot 6 Perviou Checked by JMA Checked by JMA Control 2017.1.2 <u>Model Details</u> Storage is Online Cover Level (m) 10.300 <u>Model Details</u> Storage is Online Cover Level (m) 10.300 <u>Porous Car Park Structure</u> Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 2.5 Membrane Percolation (mm/hr) 1000 Length (m) 10.5 Max Percolation (l/s) 7.3 Slope (1:X) 150.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500 Orifice Outflow Control Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500	ate 06/03/2024	Designed by IMA	Micro
CADS Source Control 2017.1.2 Model Details Storage is Online Cover Level (m) 10.300 <u>Porous Car Park Structure</u> Infiltration Coefficient Base (m/hr) 0.00000 Width (m) 2.5 Membrane Percolation (mm/hr) 1000 Length (m) 10.5 Max Percolation (1) 7.3 Slope (1:X) 150.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaluation (1) 9.500 Membrane Depth (m) 0 Orifice Outflow Control Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500	12 - 210321 - Plot 6 Peruiou	Checked by JMA	Drainage
Model Details Storage is Online Cover Level (m) 10.300 Porous Car Park Structure Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 2.5 Membrane Percolation (m/hr) 1000 Length (m) 10.5 Max Percolation (1/s) 7.3 Slope (1:X) 150.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500 Membrane Depth (m) Orifice Outflow Control 0 Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500		Source Central 2017 1 2	
Hodel Details Storage is Online Cover Level (m) 10.300 Derose Car Park Structure Infiltration Coefficient Base (m/hr) 0.0000 Midth (m) 0.5 Membrane Percolation (mm/hr) 100 Length (m) 10.5 Max Percolation (1/s) 7.3 Slope (1:X) 150.0 Safey Factor 2.0 Depression Storage (mm) 5 Sporosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500 Membrane Depth (m) 0.000 0 Orifice Outflow Control Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500 Sporosity 0.500		Source control 2017.1.2	
Storage is Online Cover Level (m) 10.300 Porous Car Park Structure Infiltration Coefficient Base (m/hr) 0.0000 Width (m) 2.5 Membrane Percolation (mm/hr) 1000 Length (m) 10.5 Max Percolation (1/s) 7.3 Slope (1:X) 150.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500 Membrane Depth (m) 0 Orifice Outflow Control Orifice 10.600 Invert Level (m) 9.500	M	odel Details	
Porous Car Park StructureInfiltration Coefficient Base (m/hr) 0.0000Width (m) 2.5 Membrane Percolation (m/hr) 0.100 Max Percolation (1/s) 7.3 Slope (1:X) 150.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500Orifice Outflow ControlDiameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500	Storage is Onl	line Cover Level (m) 10.300	
<pre>Infiltration Coefficient Base (m/hr) 0.00000 Width (m) 2.5 Membrane Percolation (mm/hr) 1000 Length (m) 10.5 Max Percolation (1/s) 7.3 Slope (1:X) 150.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500 Membrane Depth (m) 0 Orifice Outflow Control Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500</pre>	Porous	Car Park Structure	
Membrane Percolation (mm/hr) 1000 Length (m) 10.5 Max Percolation (l/s) 7.3 Slope (l:X) 150.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500 Membrane Depth (m) 0 Orifice Outflow Control Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500	Infiltration Coefficient Base ((m/hr) 0.00000 Width (m)	2.5
Max Percolation (1/s) 7.3 Slope (1:X) 150.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500 Membrane Depth (m) 0 <u>Orifice Outflow Control</u> Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500	Membrane Percolation (m	nm/hr) 1000 Length (m)	10.5
Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3 Invert Level (m) 9.500 Membrane Depth (m) 0 <u>Orifice Outflow Control</u> Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500	Max Percolation	(1/s) 7.3 Slope (1:X)	150.0
Invert Level (m) 9.500 Membrane Depth (m) 0 Orifice Outflow Control Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500	Safety F	Factor 2.0 Depression Storage (mm)	5
<u>Orifice Outflow Control</u> Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500	Invert Leve	el (m) 9.500 Membrane Depth (m)	0
Orifice Outflow Control Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500		· · ·	
Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500	Orific	e Outflow Control	

Comoron 6 P	000							Pago	1	
	055							raye .	L	
15 Victoria	Street		2103	321 - C	airston .	Road No	rth	5		
Aberdeen			Plot	c 6 Per	vious Pa	ving		L.		
AB10 1XB								Mice	Jun	
Date 06/03/	2024		Desi	lgned b	V JMA					
File 210321	- Plot 6	Perviou	Cher	rked hv				Urair	nage	
CADS SOULCE CONTROL 2017.1.2										
	~	C D D i								
	Summary	of Results	s for 3	0 year	Return H	Period	(+35%)	-		
		Half	Drain Ti	ime : 19	minutes.					
	Storm	May May	м	- v	Max	Max	Maw	Status		
	Event	Level Depti	n Trfilt	ration	Control N	Outflow	Volume	Status		
	Lvenc	(m) (m)	(1	/s)	(1/s)	(1/s)	(m ³)			
		(/	(-	, .,	(_/ _/	(=, =,	()			
15	min Summer	9.612 0.112	2	0.0	0.4	0.4	0.6	O K		
30	min Summer	9.634 0.13	4	0.0	0.5	0.5	0.8	O K		
60	min Summer	9.647 0.14	7	0.0	0.5	0.5	0.9	ΟK		
120	min Summer	9.643 0.143	3	0.0	0.5	0.5	0.9	ОК		
180	min Summer	9.634 0.13	4	0.0	0.5	0.5	0.8	OK		
240	min Summer	9.624 0.124	± 7	0.0	0.4	0.4	0.7	OK		
480	min Summer	9.007 0.10	<i>י</i> כ	0.0	0.4	0.4	0.0	OK		
600	min Summer	9.583 0.083	3	0.0	0.3	0.3	0.4	0 K		
720	min Summer	9.574 0.074	4	0.0	0.3	0.3	0.3	ΟK		
960	min Summer	9.562 0.062	2	0.0	0.3	0.3	0.2	ΟK		
1440	min Summer	9.546 0.04	6	0.0	0.2	0.2	0.1	ΟK		
2160	min Summer	9.535 0.03	ō	0.0	0.2	0.2	0.1	ΟK		
2880	min Summer	9.530 0.030	C	0.0	0.2	0.2	0.1	0 K		
4320	min Summer	9.525 0.02	5	0.0	0.1	0.1	0.0	ОК		
5760	min Summer	9.523 0.023	3	0.0	0.1	0.1	0.0	ОК		
/200	min Summer	9.521 0.02	L	0.0	0.1	0.1	0.0	OK		
10080	min Summer	9.519 0.01	3	0.0	0.1	0.1	0.0	OK		
15	min Winter	9.624 0.12	4	0.0	0.4	0.4	0.7	0 K		
10	MIN WINCOL	5.021 0.12	1	0.0	0.1	0.1	0.,	0 10		
		Storm	Rain	Flooded	Discharge	- Time-P	eak			
		Event	(mm/hr)	Volume	Volume	(mins	;)			
			、 <i>/</i>	(m ³)	(m ³)	、	,			
					, <i>i</i>					
	15	min Summer	56.548	0.0	0.8	8	15			
	30	min Summer	39.673	0.0) 1.2	2	24			
	60	min Summer	26.745	0.0) 1.'	7	42			
	120	min Summer	12 /1385	0.0	2.2	2	/6 109			
	740 190	min Summer	11 127	0.0		9	140 140			
	240		<i>-</i> /	0.0	, <u> </u>	-				

	Even	t	(mm/hr)	Volume (m³)	Volume (m³)	(mins)	
15	min	Summer	56.548	0.0	0.8	15	
30	min	Summer	39.673	0.0	1.2	24	
60	min	Summer	26.745	0.0	1.7	42	
120	min	Summer	17.385	0.0	2.2	76	
180	min	Summer	13.417	0.0	2.6	108	
240	min	Summer	11.137	0.0	2.9	140	
360	min	Summer	8.542	0.0	3.3	202	
480	min	Summer	7.068	0.0	3.7	262	
600	min	Summer	6.098	0.0	4.0	322	
720	min	Summer	5.403	0.0	4.2	382	
960	min	Summer	4.463	0.0	4.6	500	
1440	min	Summer	3.406	0.0	5.3	736	
2160	min	Summer	2.598	0.0	6.1	1092	
2880	min	Summer	2.144	0.0	6.7	1436	
4320	min	Summer	1.634	0.0	7.6	2200	
5760	min	Summer	1.346	0.0	8.3	2936	
7200	min	Summer	1.158	0.0	8.9	3608	
8640	min	Summer	1.024	0.0	9.4	4280	
10080	min	Summer	0.923	0.0	9.8	4992	
15	min	Winter	56.548	0.0	0.9	15	
		©198	82-2017	XP Soli	tions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L.
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 6 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+35%)

	Storm Event	n -	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min M	Winter	9.648	0.148	0.0	0.5	0.5	0.9	ΟK
60	min N	Winter	9.659	0.159	0.0	0.5	0.5	1.0	ОК
120	min M	Winter	9.648	0.148	0.0	0.5	0.5	0.9	ОК
180	min 1	Winter	9.632	0.132	0.0	0.5	0.5	0.8	ОК
240	min 1	Winter	9.617	0.117	0.0	0.4	0.4	0.6	ОК
360	min 1	Winter	9.593	0.093	0.0	0.4	0.4	0.5	ОК
480	min 1	Winter	9.577	0.077	0.0	0.3	0.3	0.3	ОК
600	min M	Winter	9.565	0.065	0.0	0.3	0.3	0.2	ОК
720	min 1	Winter	9.556	0.056	0.0	0.3	0.3	0.2	ОК
960	min 1	Winter	9.544	0.044	0.0	0.2	0.2	0.1	ОК
1440	min M	Winter	9.533	0.033	0.0	0.2	0.2	0.1	ОК
2160	min M	Winter	9.528	0.028	0.0	0.1	0.1	0.0	ОК
2880	min M	Winter	9.525	0.025	0.0	0.1	0.1	0.0	ОК
4320	min M	Winter	9.521	0.021	0.0	0.1	0.1	0.0	ΟK
5760	min M	Winter	9.518	0.018	0.0	0.1	0.1	0.0	ОК
7200	min 1	Winter	9.517	0.017	0.0	0.1	0.1	0.0	ОК
8640	min M	Winter	9.515	0.015	0.0	0.1	0.1	0.0	ΟK
10080	min N	Winter	9.514	0.014	0.0	0.0	0.0	0.0	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	39.673	0.0	1.4	25
60	min	Winter	26.745	0.0	1.9	44
120	min	Winter	17.385	0.0	2.5	80
180	min	Winter	13.417	0.0	2.9	114
240	min	Winter	11.137	0.0	3.2	146
360	min	Winter	8.542	0.0	3.7	208
480	min	Winter	7.068	0.0	4.1	268
600	min	Winter	6.098	0.0	4.4	326
720	min	Winter	5.403	0.0	4.7	384
960	min	Winter	4.463	0.0	5.2	498
1440	min	Winter	3.406	0.0	6.0	734
2160	min	Winter	2.598	0.0	6.8	1080
2880	min	Winter	2.144	0.0	7.5	1440
4320	min	Winter	1.634	0.0	8.5	2236
5760	min	Winter	1.346	0.0	9.3	2896
7200	min	Winter	1.158	0.0	10.0	3632
8640	min	Winter	1.024	0.0	10.5	4192
10080	min	Winter	0.923	0.0	11.0	4976

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 6 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	
Rainfall Model Return Period (years) Region Scotla: M5-60 (mm) Ratio R Summer Storms	infall Details FSR Winter Storms 30 Cv (Summer) 0. nd and Ireland Cv (Winter) 0. 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10 Yes Climate Change %	Yes 750 840 15 0080 +35
Tim	ne Area Diagram	
Tota	al Area (ha) 0.009	
Ti E~	me (mins) Area	
E T (
	0 4 0.009	
©1982-	2017 XP Solutions	

Cameron & Ross		Page 4					
15 Victoria Street	210321 - Cairston Road North						
Aberdeen	Plot 6 Pervious Paving	Ly .					
AB10 1XB	Micco						
Date 06/03/2024	Designed by JMA	Dcaipago					
File 210321 - Plot 6 Perviou	Checked by JMA	Diamaye					
CADS	Source Control 2017.1.2						
<u>N</u>	Aodel Details						
Storage is On	line Cover Level (m) 10.300						
Porous	Car Park Structure						
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	2.5					
Memorane Percolation (mm/nr) 1000 Length (m) (1/s) 7.3 Slope (1·X)	150.0					
Safety	Factor 2.0 Depression Storage (mm)	5					
Po	rosity 0.30 Evaporation (mm/day)	3					
Invert Lev	el (m) 9.500 Membrane Depth (m)	0					
Orifice Outflow Control							

Cameron & R	oss							Page	1	
15 Victoria	Street		2103	321 - 0	airston	Road No	nth			
15 VICCOIId	DUICCU		Dlot	- 6 Por		nouu ne		4		
Aberdeen		7 m								
ABIO IXB	Micr									
Date 06/03/	Drai	nano								
File 210321 - Plot 6 Perviou Checked by JMA										
CADS Source Control 2017.1.2										
	Summary c	of Results	for 1	00 year	r Return	Period	(+35%))		
		Half	Drain T:	ime : 24	minutes.					
	Storm	May May	м	- v	May	Max	Max	Status		
	Event	Level Depti	n Tnfilt	tration	Control E	Outflow	Volume	Status		
	lvenc	(m) (m)	(1	/s)	(1/s)	(1/s)	(m ³)			
15	min Summer	9.641 0.14	L	0.0	0.5	0.5	0.8	ΟK		
30	min Summer	9.672 0.17	2	0.0	0.5	0.5	1.1	ОК		
60	min Summer	9.693 0.19	3	0.0	0.6	0.6	1.2	ОК		
120	min Summer	9.691 0.19	L	0.0	0.6	0.6	1.2	OK		
180	min Summer	9.667 0.16) 7	0.0	0.5	0.5	1.1	OK		
360	min Summer	9 645 0 14	5	0.0	0.5	0.5	1.0	O K		
480	min Summer	9 627 0 12	7	0.0	0.5	0.3	0.7	0 K		
600	min Summer	9.612 0.11	2	0.0	0.4	0.4	0.6	0 K		
720	min Summer	9.600 0.10)	0.0	0.4	0.4	0.5	ΟK		
960	min Summer	9.582 0.08	2	0.0	0.3	0.3	0.4	ОК		
1440	min Summer	9.561 0.06	L	0.0	0.3	0.3	0.2	ΟK		
2160	min Summer	9.544 0.04	1	0.0	0.2	0.2	0.1	ΟK		
2880	min Summer	9.535 0.03	5	0.0	0.2	0.2	0.1	ΟK		
4320	min Summer	9.529 0.02	9	0.0	0.1	0.1	0.0	ΟK		
5760	min Summer	9.525 0.02	5	0.0	0.1	0.1	0.0	ΟK		
7200	min Summer	9.523 0.02	3	0.0	0.1	0.1	0.0	ОК		
8640	min Summer	9.521 0.02	L	0.0	0.1	0.1	0.0	OK		
10080	min Summer	9.520 0.02	J	0.0	0.1	0.1	1.0	OK		
15	min winter	9.657 0.15	/	0.0	0.5	0.5	1.0	ΟK		
		Storm	Rain	Flooded	d Discharg	e Time-P	eak			
		Event	(mm/hr)	Volume	Volume	(mins	5)			
				(m³)	(m³)					
	15	min Summor	72 673	0 (n 1	1	16			
	10	min Summer	51 518	0.0) 1. 1	6	25			
	50 60	min Summer	34.923	0.0) 2.	2	42			
	120	min Summer	22.569	0.0	2.	9	76			
	180	min Summer	17.334	0.0	э з.	4	110			
	240	min Summer	14.329	0.0	о з.	7	142			
	360	min Summer	10.919	0.0	o 4.	3	204			
	480	min Summer	8.989	0.0	o 4.	7	266			
	600	min Summer	7.724	0.0	5.	0	326			
	720	min Summer	6.821	0.0	D 5.	4	386			
	960	min Summer	5.602	0.0	5.	9	504			

1440 min Summer

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

15 min Winter

10080 min Summer

4.241

3.209

2.633

1.989

1.628

1.394

1.227

1.101

72.673

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2017 XP Solutions

6.7

7.5

8.2 9.3

10.1

10.8

11.3

11.8

1.2

738

1100

1456

2152

2840

3664

4304

4984

16

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 6 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+35%)

	Storn Event	n :	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m ³)	Status
30	min	Winter	9.692	0.192	0.0	0.6	0.6	1.2	ΟK
60	min	Winter	9.712	0.212	0.0	0.6	0.6	1.4	ΟK
120	min	Winter	9.702	0.202	0.0	0.6	0.6	1.3	ΟK
180	min	Winter	9.682	0.182	0.0	0.5	0.5	1.2	ΟK
240	min	Winter	9.662	0.162	0.0	0.5	0.5	1.0	ОК
360	min	Winter	9.631	0.131	0.0	0.4	0.4	0.8	ОК
480	min	Winter	9.607	0.107	0.0	0.4	0.4	0.6	ОК
600	min	Winter	9.590	0.090	0.0	0.4	0.4	0.4	ОК
720	min	Winter	9.578	0.078	0.0	0.3	0.3	0.3	ОК
960	min	Winter	9.560	0.060	0.0	0.3	0.3	0.2	ОК
1440	min	Winter	9.542	0.042	0.0	0.2	0.2	0.1	ОК
2160	min	Winter	9.532	0.032	0.0	0.2	0.2	0.1	ОК
2880	min	Winter	9.528	0.028	0.0	0.1	0.1	0.0	ОК
4320	min	Winter	9.524	0.024	0.0	0.1	0.1	0.0	ОК
5760	min	Winter	9.521	0.021	0.0	0.1	0.1	0.0	ОК
7200	min	Winter	9.519	0.019	0.0	0.1	0.1	0.0	ОК
8640	min	Winter	9.517	0.017	0.0	0.1	0.1	0.0	ОК
10080	min	Winter	9.516	0.016	0.0	0.1	0.1	0.0	ОК

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	51.518	0.0	1.8	26
60	min	Winter	34.923	0.0	2.5	46
120	min	Winter	22.569	0.0	3.3	82
180	min	Winter	17.334	0.0	3.8	116
240	min	Winter	14.329	0.0	4.2	150
360	min	Winter	10.919	0.0	4.8	214
480	min	Winter	8.989	0.0	5.3	274
600	min	Winter	7.724	0.0	5.7	334
720	min	Winter	6.821	0.0	6.0	392
960	min	Winter	5.602	0.0	6.6	510
1440	min	Winter	4.241	0.0	7.5	736
2160	min	Winter	3.209	0.0	8.5	1088
2880	min	Winter	2.633	0.0	9.3	1444
4320	min	Winter	1.989	0.0	10.5	2184
5760	min	Winter	1.628	0.0	11.4	2864
7200	min	Winter	1.394	0.0	12.1	3624
8640	min	Winter	1.227	0.0	12.8	4288
10080	min	Winter	1.101	0.0	13.3	5136

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	
File 210321 - Plot 6 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Date 06/03/2024 File 210321 - Plot 6 Perviou CADS Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms <u>Tin</u> Tota Fr	Designed by JMA Checked by JMA Source Control 2017.1.2 infall Details FSR Winter Storms 100 Cv (Summer) 0 nd and Ireland Cv (Winter) 0 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10 Yes Climate Change % me Area Diagram al Area (ha) 0.009 ime (mins) Area om: To: (ha) 0 4 0.009	Yes 750 840 15 0080 +35
©1982-	-2017 XP Solutions	

Storage is Online Cover Level (m) 10.300

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	10.5
Max Percolation (l/s)	7.3	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	9.500	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500

Comoron 6 P	000									Pago	1
	055				0107			- 1		raye	1
15 Victoria	Str	reet			2103	321 - Ca	airston	Road Nc	orth	5	
Aberdeen					Plot	6 Perv	vious Pa	ving		2	4
AB10 1XB										Mico	Jun
Date 06/03/	2024	ł			Desi	gned by	y JMA				U
File 210321	- F	lot 6	Pervi	011	Chec	ked bv	JMA			Ufall	nage
CADS					Sour	ce Cont	trol 201	7 1 2			
CADO					bour		201 201	1.1.2			
	Sum	mary c	of Res	111+9	for 20)n vear	Return	Period	(+35%))	
	buit	unary c	JI KCS	urts .	101 20	JU YCAI	Recuin	ICIIOU	(1000)	<u>'</u>	
				Half Dı	rain Ti	.me : 27	minutes.				
	Stor	m	Max	Max	M	ax	Max	Max	Max	Status	
	Even	t	Level	Depth	Infilt	ration (Control S	Outflow	Volume		
			(m)	(m)	(1	/s)	(l/s)	(1/s)	(m³)		
1 -		C	0 660	0 1 6 0		0 0	0 5	0 5	1 ^	0 77	
10	min	Summer	9.662	0.162		0.0	0.5	0.5	1.0	OK	
60	min	Summer	9 726	0.200		0.0	0.0	0.0	1.5	0 K	
120	min	Summer	9.726	0.226		0.0	0.6	0.6	1.5	ОК	
180	min	Summer	9.713	0.213		0.0	0.6	0.6	1.4	ОК	
240	min	Summer	9.700	0.200		0.0	0.6	0.6	1.3	ОК	
360	min	Summer	9.674	0.174		0.0	0.5	0.5	1.1	ОК	
480	min	Summer	9.652	0.152		0.0	0.5	0.5	0.9	ΟK	
600	min	Summer	9.635	0.135		0.0	0.5	0.5	0.8	ΟK	
720	min	Summer	9.620	0.120		0.0	0.4	0.4	0.7	ОК	
960	min	Summer	9.599	0.099		0.0	0.4	0.4	0.5	OK	
2160	min	Summer	9.572	0.072		0.0	0.3	0.3	0.3	OK	
2880	min	Summer	9.540	0.040		0.0	0.2	0.2	0.1	0 K	
4320	min	Summer	9.531	0.031		0.0	0.2	0.2	0.1	ΟK	
5760	min	Summer	9.527	0.027		0.0	0.1	0.1	0.0	ОК	
7200	min	Summer	9.525	0.025		0.0	0.1	0.1	0.0	ОК	
8640	min	Summer	9.523	0.023		0.0	0.1	0.1	0.0	O K	
10080	min	Summer	9.521	0.021		0.0	0.1	0.1	0.0	ΟK	
15	mın	Winter	9.681	0.181		0.0	0.5	0.5	1.1	ΟK	
			Storm		Rain	Flooded	Discharg	e Time-P	eak		
			Event	(1	mm/hr)	Volume	Volume	(mins	5)		
						(m³)	(m³)				
		15	min Su	mmer	83.965	0.0	1.	3	16		
		30	min Su	mmer	59.880	0.0	1.	9	25		
		60	min Su	mmer	40.721	0.0	2.	6	42		
		120	min Su	mmer	26.227	0.0	3.	4	78		
		180	min Su	mmer	20.088	0.0	3.	9	110		
		240	min Su	mmer	10.566	0.0	4.	3 0	144		
		360	min Su	nuner	1/C.J/	0.0	4.	フ	200		

	50 mir	Summer	40.721	0.0	2.6	42
1	20 mir	Summer	26.227	0.0	3.4	78
1	30 mir	Summer	20.088	0.0	3.9	110
2	40 mir	Summer	16.566	0.0	4.3	144
3	50 mir	Summer	12.577	0.0	4.9	206
4	30 mir	Summer	10.324	0.0	5.4	268
6)0 mir	Summer	8.850	0.0	5.8	328
7	20 mir	Summer	7.800	0.0	6.1	390
9	50 mir	Summer	6.386	0.0	6.7	510
14	40 mir	Summer	4.811	0.0	7.6	748
21	50 mir	Summer	3.624	0.0	8.6	1104
28	30 mir	Summer	2.964	0.0	9.3	1468
43	20 mir	Summer	2.228	0.0	10.5	2144
57	50 mir	Summer	1.817	0.0	11.3	2872
72)0 mir	Summer	1.550	0.0	12.0	3648
86	40 mir	Summer	1.361	0.0	12.6	4376
100	30 mir	Summer	1.219	0.0	13.1	5048
	L5 mir	Winter	83.965	0.0	1.5	16
		©198	82-2017	XP Solut	ions	

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Dcainago
File 210321 - Plot 6 Perviou	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 200 year Return Period (+35%)

	Storm	1 -	Max	Max	Max	Max	Max E Outflow	Max	Status
	lvent	-	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min N	Winter	9.723	0.223	0.0	0.6	0.6	1.5	ОК
60	min N	Winter	9.750	0.250	0.0	0.6	0.6	1.7	ОК
120	min N	Winter	9.741	0.241	0.0	0.6	0.6	1.6	ОК
180	min N	Winter	9.719	0.219	0.0	0.6	0.6	1.4	ΟK
240	min N	Winter	9.697	0.197	0.0	0.6	0.6	1.3	ОК
360	min N	Winter	9.660	0.160	0.0	0.5	0.5	1.0	ОК
480	min N	Winter	9.632	0.132	0.0	0.5	0.5	0.8	ОК
600	min N	Winter	9.611	0.111	0.0	0.4	0.4	0.6	ΟK
720	min N	Winter	9.595	0.095	0.0	0.4	0.4	0.5	ОК
960	min N	Winter	9.573	0.073	0.0	0.3	0.3	0.3	ОК
1440	min N	Winter	9.550	0.050	0.0	0.3	0.3	0.1	ОК
2160	min N	Winter	9.535	0.035	0.0	0.2	0.2	0.1	ОК
2880	min N	Winter	9.530	0.030	0.0	0.2	0.2	0.1	ОК
4320	min N	Winter	9.525	0.025	0.0	0.1	0.1	0.0	ОК
5760	min N	Winter	9.522	0.022	0.0	0.1	0.1	0.0	ОК
7200	min N	Winter	9.520	0.020	0.0	0.1	0.1	0.0	ОК
8640	min N	Winter	9.519	0.019	0.0	0.1	0.1	0.0	ΟK
10080	min N	Winter	9.517	0.017	0.0	0.1	0.1	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	59.880	0.0	2.1	27
60	min	Winter	40.721	0.0	2.9	46
120	min	Winter	26.227	0.0	3.8	82
180	min	Winter	20.088	0.0	4.4	118
240	min	Winter	16.566	0.0	4.9	152
360	min	Winter	12.577	0.0	5.6	216
480	min	Winter	10.324	0.0	6.1	278
600	min	Winter	8.850	0.0	6.5	338
720	min	Winter	7.800	0.0	6.9	398
960	min	Winter	6.386	0.0	7.5	512
1440	min	Winter	4.811	0.0	8.5	738
2160	min	Winter	3.624	0.0	9.6	1100
2880	min	Winter	2.964	0.0	10.5	1420
4320	min	Winter	2.228	0.0	11.8	2148
5760	min	Winter	1.817	0.0	12.7	2840
7200	min	Winter	1.550	0.0	13.5	3672
8640	min	Winter	1.361	0.0	14.2	4400
10080	min	Winter	1.219	0.0	14.8	5096

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Plot 6 Pervious Paving	L.
AB10 1XB		Micco
Date 06/03/2024	Designed by JMA	Desinado
File 210321 - Plot 6 Perviou	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Rainfall Details

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	200	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	13.000	Shortest Storm (mins)	15
Ratio R	0.250	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+35

Time Area Diagram

Total Area (ha) 0.009

Time	(mins)	Area
From:	To:	(ha)

0 4 0.009

1

Storage is Online Cover Level (m) 10.300

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.5
Membrane Percolation (mm/hr)	1000	Length (m)	10.5
Max Percolation (l/s)	7.3	Slope (1:X)	150.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	9.500	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 9.500

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Desinado
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 0 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(l/s)	(m³)	
15	min	Summer	8 749	0 249	0 0	6 1	6 1	0.2	ОК
30	min	Summer	8 730	0.230	0.0	5.8	5.8	0.2	0 K
60	min	Summer	8 659	0.159	0.0	4 6	4.6	0.2	O K
120	min	Summer	8 609	0.109	0.0	3.4	3 4	0.1	0 K
180	min	Summer	8 595	0.105	0.0	2.8	2.8	0.0	O K
240	min	Summer	8 585	0 085	0.0	2.0	2.0	0.0	0 K
360	min	Summer	8 573	0 073	0.0	1 8	1 8	0.0	0 K
480	min	Summer	8 566	0.066	0.0	1.0	1.0	0.0	O K
600	min	Summer	8 561	0 061	0.0	1 4	1 4	0.0	0 K
720	min	Summer	8 556	0.056	0.0	1 2	1 2	0.0	0 K
960	min	Summer	8 550	0 050	0.0	1 0	1 0	0.0	0 K
1440	min	Summer	8 544	0 044	0.0	0.8	0.8	0 0	0 K
2160	min	Summer	8 540	0 040	0.0	0.7	0.7	0.0	0 K
2880	min :	Summer	8.537	0.037	0.0	0.5	0.5	0.0	0 K
4320	min	Summer	8.532	0.032	0.0	0.4	0.4	0.0	0 K
5760	min	Summer	8.529	0.029	0.0	0.4	0.4	0.0	0 K
7200	min	Summer	8.528	0.028	0.0	0.3	0.3	0.0	0 K
8640	min	Summer	8.526	0.026	0.0	0.3	0.3	0.0	0 K
10080	min	Summer	8.525	0.025	0.0	0.3	0.3	0.0	0 K
15	min N	Winter	8.754	0.254	0.0	6.2	6.2	0.2	0 K
							0.2	•••	

Storm			Rain	Flooded	Discharge	Time-Peak	
	Event			Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	19.000	0.0	2.6	11	
30	min	Summer	13.218	0.0	3.7	18	
60	min	Summer	8.918	0.0	4.9	32	
120	min	Summer	5.920	0.0	6.6	62	
180	min	Summer	4.641	0.0	7.7	92	
240	min	Summer	3.903	0.0	8.7	122	
360	min	Summer	3.055	0.0	10.2	184	
480	min	Summer	2.569	0.0	11.4	240	
600	min	Summer	2.246	0.0	12.5	306	
720	min	Summer	2.013	0.0	13.4	358	
960	min	Summer	1.694	0.0	15.0	482	
1440	min	Summer	1.326	0.0	17.7	710	
2160	min	Summer	1.034	0.0	20.7	1068	
2880	min	Summer	0.866	0.0	23.1	1460	
4320	min	Summer	0.675	0.0	27.0	2160	
5760	min	Summer	0.566	0.0	30.1	2720	
7200	min	Summer	0.494	0.0	32.8	3616	
8640	min	Summer	0.441	0.0	35.2	4352	
10080	min	Summer	0.401	0.0	37.3	4968	
15	min	Winter	19.000	0.0	3.0	11	
		©198	32-2017	XP Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Dialitage
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Storm Event			Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min W	linter	8.694	0.194	0.0	5.2	5.2	0.1	ОК
60	min W	linter	8.620	0.120	0.0	3.8	3.8	0.0	0 K
120	min W	linter	8.590	0.090	0.0	2.6	2.6	0.0	0 K
180	min W	linter	8.577	0.077	0.0	2.0	2.0	0.0	0 K
240	min W	linter	8.570	0.070	0.0	1.7	1.7	0.0	0 K
360	min W	linter	8.560	0.060	0.0	1.3	1.3	0.0	0 K
480	min W	Vinter	8.553	0.053	0.0	1.1	1.1	0.0	ΟK
600	min W	Vinter	8.548	0.048	0.0	1.0	1.0	0.0	ΟK
720	min W	Vinter	8.545	0.045	0.0	0.9	0.9	0.0	ОК
960	min W	Vinter	8.542	0.042	0.0	0.8	0.8	0.0	ОК
1440	min W	Vinter	8.538	0.038	0.0	0.6	0.6	0.0	ОК
2160	min W	Vinter	8.534	0.034	0.0	0.5	0.5	0.0	ΟK
2880	min W	Vinter	8.531	0.031	0.0	0.4	0.4	0.0	ОК
4320	min W	Vinter	8.527	0.027	0.0	0.3	0.3	0.0	ОК
5760	min W	Vinter	8.525	0.025	0.0	0.3	0.3	0.0	ОК
7200	min W	Vinter	8.523	0.023	0.0	0.2	0.2	0.0	ОК
8640	min W	Vinter	8.524	0.024	0.0	0.2	0.2	0.0	ОК
10080	min W	Vinter	8.522	0.022	0.0	0.2	0.2	0.0	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	13.218	0.0	4.1	18
60	min	Winter	8.918	0.0	5.5	32
120	min	Winter	5.920	0.0	7.4	62
180	min	Winter	4.641	0.0	8.7	94
240	min	Winter	3.903	0.0	9.7	120
360	min	Winter	3.055	0.0	11.4	184
480	min	Winter	2.569	0.0	12.8	244
600	min	Winter	2.246	0.0	14.0	322
720	min	Winter	2.013	0.0	15.0	356
960	min	Winter	1.694	0.0	16.8	466
1440	min	Winter	1.326	0.0	19.8	702
2160	min	Winter	1.034	0.0	23.1	1120
2880	min	Winter	0.866	0.0	25.8	1452
4320	min	Winter	0.675	0.0	30.2	2124
5760	min	Winter	0.566	0.0	33.8	2848
7200	min	Winter	0.494	0.0	36.8	3592
8640	min	Winter	0.441	0.0	39.4	4384
10080	min	Winter	0.401	0.0	41.8	5200

		T
Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L.
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Desipado
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Pa	infall Details	

Rainfall Details

Rainfall Model	FSI	R Winter Storms	Yes
Return Period (years)	:	L Cv (Summer)	0.750
Region	Scotland and Ireland	d Cv (Winter)	0.840
M5-60 (mm)	13.000) Shortest Storm (mins)	15
Ratio R	0.250) Longest Storm (mins)	10080
Summer Storms	Ye	s Climate Change %	+0

Time Area Diagram

Total Area (ha) 0.074

Time	(mins)	Area
From:	To:	(ha)

0 4 0.074

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safety	Factor	2.0		Slope (1:X)	15.0
	Po	0.35		Cap Volume Depth (m)	0.000	
	Invert Lev	el (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench Wid	th (m)	1.0		Number of Pipes	1
	Trench Leng	th (m)	12.0			

Orifice Outflow Control

Diameter (m) 0.080 Discharge Coefficient 0.600 Invert Level (m) 8.500

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Dcaipago
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Half Drain Time : 1 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(1/s)	(m³)	
15	min	Cummor	0 000	0 400	0 0	0 1	0 1	0 0	0 K
10		Gumman	0.999	0.499	0.0	9.1	9.1	0.0	O K
50		Summer	0.975	0.475	0.0	0.0	0.0	0.7	0 K
60	min :	Summer	8.859	0.359	0.0	7.5	/.5	0.4	OK
120	min	Summer	8.722	0.222	0.0	5.7	5.7	0.2	ОК
180	min	Summer	8.660	0.160	0.0	4.6	4.6	0.1	ОК
240	min	Summer	8.626	0.126	0.0	3.9	3.9	0.1	ΟK
360	min :	Summer	8.601	0.101	0.0	3.1	3.1	0.0	ОК
480	min	Summer	8.589	0.089	0.0	2.5	2.5	0.0	ОК
600	min	Summer	8.582	0.082	0.0	2.2	2.2	0.0	ОК
720	min	Summer	8.576	0.076	0.0	2.0	2.0	0.0	ОК
960	min	Summer	8.568	0.068	0.0	1.7	1.7	0.0	ОК
1440	min	Summer	8.557	0.057	0.0	1.3	1.3	0.0	ОК
2160	min	Summer	8.548	0.048	0.0	1.0	1.0	0.0	ΟK
2880	min	Summer	8.544	0.044	0.0	0.8	0.8	0.0	ΟK
4320	min	Summer	8.539	0.039	0.0	0.6	0.6	0.0	ΟK
5760	min	Summer	8.537	0.037	0.0	0.6	0.6	0.0	ΟK
7200	min	Summer	8.533	0.033	0.0	0.4	0.4	0.0	ΟK
8640	min	Summer	8.532	0.032	0.0	0.4	0.4	0.0	ОК
10080	min	Summer	8.529	0.029	0.0	0.4	0.4	0.0	ОК
15	min 1	Winter	9.015	0.515	0.0	9.2	9.2	0.9	ОК

Storm		Rain	Flooded	Discharge	Time-Peak		
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	33.317	0.0	4.6	11	
30	min	Summer	23.154	0.0	6.4	19	
60	min	Summer	15.530	0.0	8.6	34	
120	min	Summer	10.149	0.0	11.3	64	
180	min	Summer	7.867	0.0	13.1	92	
240	min	Summer	6.555	0.0	14.6	122	
360	min	Summer	5.058	0.0	16.8	182	
480	min	Summer	4.204	0.0	18.7	244	
600	min	Summer	3.641	0.0	20.2	298	
720	min	Summer	3.236	0.0	21.6	360	
960	min	Summer	2.686	0.0	23.9	480	
1440	min	Summer	2.065	0.0	27.5	710	
2160	min	Summer	1.587	0.0	31.7	1084	
2880	min	Summer	1.317	0.0	35.1	1436	
4320	min	Summer	1.011	0.0	40.4	2136	
5760	min	Summer	0.838	0.0	44.7	2776	
7200	min	Summer	0.725	0.0	48.2	3568	
8640	min	Summer	0.643	0.0	51.3	4272	
10080	min	Summer	0.582	0.0	54.2	4976	
15	min	Winter	33.317	0.0	5.2	11	
10			30.01/	0.0	··		
		©198	32-2017	XP Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Desinado
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

	Storm Event	1	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min V	Winter	8.931	0.431	0.0	8.4	8.4	0.6	ОК
60	min V	Winter	8.773	0.273	0.0	6.4	6.4	0.3	ОК
120	min V	Winter	8.648	0.148	0.0	4.4	4.4	0.1	ОК
180	min V	Winter	8.610	0.110	0.0	3.4	3.4	0.0	ОК
240	min V	Winter	8.597	0.097	0.0	2.9	2.9	0.0	ОК
360	min V	Winter	8.582	0.082	0.0	2.2	2.2	0.0	ОК
480	min V	Winter	8.573	0.073	0.0	1.9	1.9	0.0	ОК
600	min V	Winter	8.568	0.068	0.0	1.6	1.6	0.0	ΟK
720	min V	Winter	8.563	0.063	0.0	1.4	1.4	0.0	ОК
960	min V	Winter	8.555	0.055	0.0	1.2	1.2	0.0	ΟK
1440	min V	Winter	8.546	0.046	0.0	0.9	0.9	0.0	ОК
2160	min V	Winter	8.541	0.041	0.0	0.7	0.7	0.0	ОК
2880	min V	Winter	8.539	0.039	0.0	0.6	0.6	0.0	ОК
4320	min V	Winter	8.534	0.034	0.0	0.5	0.5	0.0	ΟK
5760	min V	Winter	8.531	0.031	0.0	0.4	0.4	0.0	ОК
7200	min V	Winter	8.529	0.029	0.0	0.4	0.4	0.0	ОК
8640	min V	Winter	8.527	0.027	0.0	0.3	0.3	0.0	ΟK
10080	min V	Winter	8.525	0.025	0.0	0.3	0.3	0.0	ΟK

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0			00 154	0 0	7 0	1.0
30	mın	Winter	23.154	0.0	1.2	19
60	min	Winter	15.530	0.0	9.7	34
120	min	Winter	10.149	0.0	12.6	62
180	min	Winter	7.867	0.0	14.7	92
240	min	Winter	6.555	0.0	16.3	122
360	min	Winter	5.058	0.0	18.9	178
480	min	Winter	4.204	0.0	20.9	236
600	min	Winter	3.641	0.0	22.6	306
720	min	Winter	3.236	0.0	24.1	368
960	min	Winter	2.686	0.0	26.7	476
1440	min	Winter	2.065	0.0	30.8	732
2160	min	Winter	1.587	0.0	35.5	1036
2880	min	Winter	1.317	0.0	39.3	1424
4320	min	Winter	1.011	0.0	45.3	2196
5760	min	Winter	0.838	0.0	50.0	2872
7200	min	Winter	0.725	0.0	54.0	3544
8640	min	Winter	0.643	0.0	57.6	4264
10080	min	Winter	0.582	0.0	60.7	4976

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	Ly .
AB10 1XB		Micro
Date 07/03/2024	Designed by JMA	Drainago
File 210321 - Roadside Filte	Checked by JMA	Diamage
CADS	Source Control 2017.1.2	
CADS Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms <u>Tim</u> Tota Ti	Source Control 2017.1.2 infall Details FSR Winter Storms 10 Cv (Summer) 0. nd and Ireland Cv (Winter) 0. 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10 Yes Climate Change % ne Area Diagram al Area (ha) 0.074 .me (mins) Area om: To: (ha) 0 4 0.074	Yes 750 840 15 0080 +0
©1982-	-2017 XP Solutions	

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safety	Factor	2.0		Slope (1:X)	15.0
	Po	rosity	0.35		Cap Volume Depth (m)	0.000
	Invert Lev	el (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench Wid	th (m)	1.0		Number of Pipes	1
	Trench Leng	th (m)	12.0			

Orifice Outflow Control

Diameter (m) 0.080 Discharge Coefficient 0.600 Invert Level (m) 8.500

Cameron & R	oss								Page 1	-
15 Victoria	Street			2103	821 - 0	Cairston	Road N	orth		
Aberdeen Road-side Filter Drain 1									4	
AB10 1XB									Micco	m
Date 07/03/2024 Designed by JMA										
File 210321 - Roadside Filte Checked by JMA								Uralli	age	
CADS				Sour	ce Cor	ntrol 20	17.1.2			
	Summary	of Rea	sults	for 3	0 year	Return	Period	(+35%)	_	
			Half D	rain T	ime : 3	minutes.				
	Storm	Max	Max	M	ax	Max	Max	Max	Status	
	Event	Level	Depth	Infilt	ration	Control	Σ Outflow	Volume		
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)		
15	min Summer	9.358	0.858		0.0	12.1	12.1	2.2	ОК	
30	min Summer	9.361	0.861		0.0	12.1	12.1	2.2	ОК	
60	min Summer	9.219	0.719		0.0	11.0	11.0	1.6	ОК	
120	min Summer	9.000	0.500		0.0	9.1	9.1	0.8	ОК	
180	min Summer	8.865	0.365		0.0	7.6	7.6	0.4	ΟK	
240	min Summer	8.780	0.280		0.0	6.5	6.5	0.3	ΟK	
360	min Summer	8.688	0.188		0.0	5.1	5.1	0.1	ОК	
480	min Summer	8.642	0.142		0.0	4.3	4.3	0.1	ΟK	
600	min Summer	8.616	0.116		0.0	3.7	3.7	0.0	O K	
720	min Summer	8.606	0.106		0.0	3.3	3.3	0.0	ΟK	
960	min Summer	8.593	0.093		0.0	2.7	2.7	0.0	ОК	
1440	min Summer	8.578	0.078		0.0	2.1	2.1	0.0	ОК	
2160	min Summer	8.567	0.067		0.0	1.6	1.6	0.0	ΟK	
2880	min Summer	8.559	0.059		0.0	1.3	1.3	0.0	ΟK	
4320	min Summer	8.548	0.048		0.0	1.0	1.0	0.0	ΟK	
5760	min Summer	8.547	0.047		0.0	0.9	0.9	0.0	ΟK	
7200	min Summer	8.542	0.042		0.0	0.7	0.7	0.0	ΟK	
8640	min Summer	8.541	0.041		0.0	0.7	0.7	0.0	ΟK	
10080	min Summer	8.538	0.038		0.0	0.6	0.6	0.0	ОК	
15	min Winter	9.412	0.912		0.0	12.5	12.5	2.5	ОК	
		Storm		Rain	Floode	d Dischar	ge Time-1	Peak		
		Event	(1	mm/hr)	Volume	volum	e (min	s)		
					(m³)	(m³)				
	15	min Su	ummer	56.548	0.	0 7	7.9	12		
	30	min Su	ummer 3	39.673	0.	0 11	.0	20		
1					~			2.6		

	Even	t	(mm/hr)	Volume (m³)	Volume (m³)	(mins)
15	min	Summer	56.548	0.0	7.9	12
30	min	Summer	39.673	0.0	11.0	20
60	min	Summer	26.745	0.0	14.8	36
120	min	Summer	17.385	0.0	19.3	64
180	min	Summer	13.417	0.0	22.3	94
240	min	Summer	11.137	0.0	24.7	124
360	min	Summer	8.542	0.0	28.4	184
480	min	Summer	7.068	0.0	31.4	242
600	min	Summer	6.098	0.0	33.8	306
720	min	Summer	5.403	0.0	36.0	360
960	min	Summer	4.463	0.0	39.6	476
1440	min	Summer	3.406	0.0	45.4	734
2160	min	Summer	2.598	0.0	51.9	1088
2880	min	Summer	2.144	0.0	57.1	1436
4320	min	Summer	1.634	0.0	65.3	2108
5760	min	Summer	1.346	0.0	71.7	2824
7200	min	Summer	1.158	0.0	77.1	3600
8640	min	Summer	1.024	0.0	81.8	4280
10080	min	Summer	0.923	0.0	86.0	4968
15	min	Winter	56.548	0.0	8.9	12
		©198	32-2017	XP Solı	utions	

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+35%)

	Storm		Max	Max	Max	Max	Max S Outflow	Max	Status
	Lvent	-	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min	Winter	9.340	0.840	0.0	12.0	12.0	2.1	ОК
60	min	Winter	9.119	0.619	0.0	10.2	10.2	1.2	ОК
120	min	Winter	8.847	0.347	0.0	7.4	7.4	0.4	ОК
180	min	Winter	8.730	0.230	0.0	5.8	5.8	0.2	ОК
240	min	Winter	8.672	0.172	0.0	4.8	4.8	0.1	ОК
360	min	Winter	8.618	0.118	0.0	3.7	3.7	0.0	ОК
480	min	Winter	8.602	0.102	0.0	3.1	3.1	0.0	ОК
600	min	Winter	8.592	0.092	0.0	2.7	2.7	0.0	ΟK
720	min	Winter	8.585	0.085	0.0	2.4	2.4	0.0	ОК
960	min	Winter	8.576	0.076	0.0	2.0	2.0	0.0	ОК
1440	min	Winter	8.565	0.065	0.0	1.5	1.5	0.0	ОК
2160	min	Winter	8.554	0.054	0.0	1.2	1.2	0.0	ΟK
2880	min	Winter	8.548	0.048	0.0	1.0	1.0	0.0	ОК
4320	min	Winter	8.542	0.042	0.0	0.8	0.8	0.0	ОК
5760	min	Winter	8.539	0.039	0.0	0.6	0.6	0.0	ОК
7200	min	Winter	8.536	0.036	0.0	0.5	0.5	0.0	ОК
8640	min	Winter	8.534	0.034	0.0	0.5	0.5	0.0	ΟK
10080	min	Winter	8.532	0.032	0.0	0.4	0.4	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	39.673	0.0	12.3	20
60	min	Winter	26.745	0.0	16.6	36
120	min	Winter	17.385	0.0	21.6	64
180	min	Winter	13.417	0.0	25.0	94
240	min	Winter	11.137	0.0	27.7	124
360	min	Winter	8.542	0.0	31.9	182
480	min	Winter	7.068	0.0	35.1	242
600	min	Winter	6.098	0.0	37.9	300
720	min	Winter	5.403	0.0	40.3	362
960	min	Winter	4.463	0.0	44.4	500
1440	min	Winter	3.406	0.0	50.8	722
2160	min	Winter	2.598	0.0	58.1	1112
2880	min	Winter	2.144	0.0	64.0	1480
4320	min	Winter	1.634	0.0	73.1	2212
5760	min	Winter	1.346	0.0	80.3	2880
7200	min	Winter	1.158	0.0	86.4	3600
8640	min	Winter	1.024	0.0	91.7	4304
10080	min	Winter	0.923	0.0	96.3	5432

Cameron & Ross		Page 3							
15 Victoria Street	210321 - Cairston Road North								
Aberdeen	Road-side Filter Drain 1	L.							
AB10 1XB		Micco							
Date 07/03/2024	Designed by JMA								
File 210321 - Roadside Filte	Checked by JMA	Dialinage							
CADS	Source Control 2017.1.2								
Rainfall Details									
Rainfall Model	FSR Winter Storms	Yes							
Return Period (years)	30 Cv (Summer) 0	.750							
Region Scotla	nd and Ireland Cv (Winter) O	.840							
M5-60 (mm)	13.000 Shortest Storm (mins)	15							
Ratio K Summer Storms	U.25U Longest Storm (mins) 1 Yes Climate Change %	+35							
Summer Scorms	ies crimate change :	155							
Tin	ne Area Diagram								
Tota	al Area (ha) 0.074								
Ti Fr	ime (mins) Area om: To: (ha)								
	0 4 0.074								

©1982-2017 XP Solutions

Comercen & Read		Dago 1
Calleron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micro
Date 07/03/2024	Designed by JMA	Dcainago
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Base	e (m/	hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Side	e (m/	hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safet	/ Fac	tor	2.0		Slope (1:X)	15.0
	Porosity			0.35		Cap Volume Depth (m)	0.000
	Invert L	evel	(m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench W	dth	(m)	1.0		Number of Pipes	1
	Trench Le	ngth	(m)	12.0			

Orifice Outflow Control

Diameter (m) 0.080 Discharge Coefficient 0.600 Invert Level (m) 8.500

Company of D									Direct	1
Cameron & R	OSS								Page	Ţ
15 Victoria Street				2103	21 - C	airston	Road Nc	orth	5	
Aberdeen				Road	-side	Filter D	rain 1		2	4
AB10 1XB									Mice	Jun
Date 07/03/	2024	Desi	gned b	у ЈМА			Desi	U		
File 210321 - Roadside Filte					ked by	JMA			Uldi	nage
CADS Source Control 2017 1 2										
Summary of Results for 100 year Return Period (+35%)										
Half Drain Time : 3 minutes.										
	Storm	Mov	May	м-		Max	Mow	May	Status	
	Event	Max Level D	max enth T	ma hfilt	ration	Max Control E	Outflow	Volume	Status	
		(m)	(m)	(1/	/s)	(1/s)	(1/s)	(m ³)		
15	min Summer	9.633 1	.133		0.0	14.0	14.0	3.4	ΟK	
30	min Summer	9.675 1	.175		0.0	14.2	14.2	3.6	ОК	
60	min Summer	9.513 1	.013		0.0	13.2	13.2	2.9	OK	
120	min Summer	9.222 0	537		0.0	11.U 9.1	11.U Q /	1.0	OK	
240) min Summer	8 918 0	418		0.0	8 2	8 2	0.9	0 K	
360	min Summer	8.779 0	.279		0.0	6.5	6.5	0.3	0 K	
480	min Summer	8.705 0	.205		0.0	5.4	5.4	0.1	ΟK	
600	min Summer	8.662 0	.162		0.0	4.7	4.7	0.1	ОК	
720	min Summer	8.635 0	.135		0.0	4.1	4.1	0.1	ОК	
960	min Summer	8.609 0	.109		0.0	3.4	3.4	0.0	ОК	
1440	min Summer	8.590 0	.090		0.0	2.6	2.6	0.0	O K	
2160	min Summer	8.576 0	.076		0.0	2.0	2.0	0.0	ΟK	
2880) min Summer	8.567 0	.067		0.0	1.6	1.6	0.0	ΟK	
4320) min Summer	8.556 0	.056		0.0	1.2	1.2	0.0	ОК	
5/60	min Summer	8.550 0	.050		0.0	1.0	1.0	0.0	OK	
7200	min Summer	8.545 0	0.045		0.0	0.9	0.9	0.0	OK	
10080	min Summer	8 541 0	043		0.0	0.8	0.0	0.0	OK	
15	min Winter	9.719 1	.219		0.0	14.5	14.5	3.7	0 K	
		Storm	R	ain	Flooded	l Discharg	e Time-P	eak		
		Event	(m	m/hr)	Volume	Volume	(mins	5)		
			•		(m³)	(m ³)	•	•		
			_							
	15	min Sumr	ner /2	2.6/3	0.0	10.	1	12		
	30	min Sumr	ner 5. nor 2.	1.518	0.0) 14.	3	20		
	120	min Sum	ner 2'	4.923 2 569	0.0) 19.	1	50 66		
	180	min Sum	ner 1'	7.334	0.0	, 23.) 28	- 9	96		
	240	min Sumr	ner 14	4.329	0.0) 31.	8	124		
	360	min Sumr	ner 10	0.919	0.0) 36.	4	184		
	480	min Sumr	ner 8	8.989	0.0) 39.	9	244		
	600	min Sumr	ner '	7.724	0.0	42.	9	306		
	720	min Sumr	ner (6.821	0.0	45.	4	360		

960 min Summer

1440 min Summer

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

15 min Winter

10080 min Summer

5.602

4.241

3.209

2.633

1.989

1.628

1.394

1.227

1.101

72.673

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2017 XP Solutions

49.7

56.5

64.1

70.1

79.5

92.8

98.0

102.6

11.3

86.8

478

730

1064

1416

2192

2928

3744

4280

5016

12
Cameron & Boss		Page 2
		rage z
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micro
Date 07/03/2024	Designed by JMA	Dcainago
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+35%)

	Storr Event	n L	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min	Winter	9.672	1.172	0.0	14.2	14.2	3.6	ОК
60	min	Winter	9.391	0.891	0.0	12.3	12.3	2.4	ОК
120	min	Winter	9.033	0.533	0.0	9.4	9.4	0.9	ОК
180	min	Winter	8.852	0.352	0.0	7.5	7.5	0.4	ОК
240	min	Winter	8.758	0.258	0.0	6.2	6.2	0.2	ОК
360	min	Winter	8.667	0.167	0.0	4.8	4.8	0.1	ОК
480	min	Winter	8.627	0.127	0.0	3.9	3.9	0.1	ОК
600	min	Winter	8.609	0.109	0.0	3.4	3.4	0.0	ΟK
720	min	Winter	8.600	0.100	0.0	3.0	3.0	0.0	ΟK
960	min	Winter	8.587	0.087	0.0	2.5	2.5	0.0	ΟK
1440	min	Winter	8.574	0.074	0.0	1.9	1.9	0.0	ОК
2160	min	Winter	8.562	0.062	0.0	1.4	1.4	0.0	ОК
2880	min	Winter	8.554	0.054	0.0	1.2	1.2	0.0	ОК
4320	min	Winter	8.546	0.046	0.0	0.9	0.9	0.0	ΟK
5760	min	Winter	8.542	0.042	0.0	0.8	0.8	0.0	ОК
7200	min	Winter	8.540	0.040	0.0	0.7	0.7	0.0	ОК
8640	min	Winter	8.538	0.038	0.0	0.6	0.6	0.0	ОК
10080	min	Winter	8.535	0.035	0.0	0.5	0.5	0.0	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	51.518	0.0	16.0	21
60	min	Winter	34.923	0.0	21.7	36
120	min	Winter	22.569	0.0	28.1	66
180	min	Winter	17.334	0.0	32.3	94
240	min	Winter	14.329	0.0	35.6	124
360	min	Winter	10.919	0.0	40.7	182
480	min	Winter	8.989	0.0	44.7	242
600	min	Winter	7.724	0.0	48.0	300
720	min	Winter	6.821	0.0	50.9	358
960	min	Winter	5.602	0.0	55.7	486
1440	min	Winter	4.241	0.0	63.3	722
2160	min	Winter	3.209	0.0	71.8	1092
2880	min	Winter	2.633	0.0	78.6	1476
4320	min	Winter	1.989	0.0	89.0	2196
5760	min	Winter	1.628	0.0	97.2	3088
7200	min	Winter	1.394	0.0	103.9	3272
8640	min	Winter	1.227	0.0	109.8	4152
10080	min	Winter	1.101	0.0	114.9	5072

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	Y
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Diamatje
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	100 Cv (Summer) 0	.750
M5-60 (mm)	nd and ireland CV (Winter) U 13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 1	0080
Summer Storms	Yes Climate Change %	+35
Tin	ne Area Diagram	
Tota	al Area (ha) 0.074	
n -	me (mins) Area	
Fr	om: To: (ha)	
	0 4 0.074	
©1982-	-2017 XP Solutions	

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safety	Factor	2.0		Slope (1:X)	15.0
	Po	rosity	0.35		Cap Volume Depth (m)	0.000
	Invert Lev	el (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench Wid	th (m)	1.0		Number of Pipes	1
	Trench Leng	th (m)	12.0			

Orifice Outflow Control

15 Victoria Street 210321 - Cairston Road North	
Aberdeen Road-side Filter Drain 1	-
AB10_1XB	m
Date 07/03/2024 Designed by JMA	10
File 210321 - Roadside Filte Checked by JMA	inage
CADS Source Control 2017 1 2	_
Summary of Results for 200 year Return Period (+35%)	
Half Drain Time : 4 minutes.	
Storm Max Max Max Max Max Max Status	
Event Level Depth Infiltration Control S Outflow Volume	
(m) (m) $(1/s)$ $(1/s)$ (m^3)	
15 min Summer 9 837 1 337 0 0 15 2 15 2 4 2 0 K	
30 min Summer 9.913 1.413 0.0 15.7 15.7 4.6 O K	
60 min Summer 9.748 1.248 0.0 14.7 14.7 3.9 OK	
120 min Summer 9.384 0.884 0.0 12.3 12.3 2.3 O K	
180 min Summer 9.171 0.671 0.0 10.6 10.6 1.4 0 K	
240 min Summer 9.024 0.524 0.0 9.3 9.3 0.9 O K	
360 min Summer 8.852 0.352 0.0 7.5 7.5 0.4 O K	
480 min Summer 8.757 0.257 0.0 6.2 6.2 0.2 O K	
600 min Summer 8.700 0.200 0.0 5.3 5.3 0.1 O K	
720 min Summer 8.665 0.165 0.0 4.7 4.7 0.1 O K	
960 min Summer 8.624 0.124 0.0 3.9 3.9 0.1 0 K	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2880 min Summer 8 573 0 073 0 0 1 8 1 8 0 0 0 K	
4320 min Summer 8.561 0.061 0.0 1.4 1.4 0.0 0 K	
5760 min Summer 8.553 0.053 0.0 1.1 1.1 0.0 O K	
7200 min Summer 8.547 0.047 0.0 1.0 1.0 0.0 0 K	
8640 min Summer 8.545 0.045 0.0 0.9 0.9 0.0 0 K	
10080 min Summer 8.543 0.043 0.0 0.8 0.8 0.0 0 K	
15 min Winter 9.945 1.445 0.0 15.8 15.8 4.7 O K	
Storm Rain Flooded Discharge Time-Peak	
Event (mm/hr) Volume Volume (mins)	
(m ³) (m ³)	
15 min Summer 83.965 0.0 11.7 12	
30 min Summer 59.880 0.0 16.6 20	
60 min Summer 40.721 0.0 22.6 36	
120 min Summer 26.227 0.0 29.1 66	
180 min Summer 20.088 0.0 33.4 96	
240 min Summer 10.566 0.0 36.8 126	
480 min Summer 10.324 0.0 45.8 244	

8.850

6.386

4.811

3.624

2.964

2.228

1.817

1.550

1.361

1.219

83.965

7.800

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2017 XP Solutions

49.1

51.9

56.7

64.1

72.4

79.0

89.0

96.8

103.2

108.8

113.6

13.1

306

366

482

726

1076

1424

2204

2912

3664

4296

5024

12

600 min Summer

720 min Summer

960 min Summer

1440 min Summer

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

15 min Winter

10080 min Summer

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Dcainago
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 200 year Return Period (+35%)

	Storm	n -	Max Level	Max Depth	Max Infiltration	Max	Max E Outflow	Max	Status
	20010	-	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min 1	Winter	9.933	1.433	0.0	15.8	15.8	4.7	ОК
60	min 1	Winter	9.615	1.115	0.0	13.8	13.8	3.3	ОК
120	min N	Winter	9.176	0.676	0.0	10.7	10.7	1.4	ΟK
180	min 1	Winter	8.952	0.452	0.0	8.6	8.6	0.7	ОК
240	min 1	Winter	8.829	0.329	0.0	7.2	7.2	0.4	ОК
360	min 1	Winter	8.709	0.209	0.0	5.5	5.5	0.2	ОК
480	min N	Winter	8.654	0.154	0.0	4.5	4.5	0.1	ΟK
600	min N	Winter	8.624	0.124	0.0	3.9	3.9	0.1	ΟK
720	min 1	Winter	8.609	0.109	0.0	3.4	3.4	0.0	ΟK
960	min 1	Winter	8.595	0.095	0.0	2.8	2.8	0.0	ОК
1440	min 1	Winter	8.579	0.079	0.0	2.1	2.1	0.0	ОК
2160	min 1	Winter	8.568	0.068	0.0	1.6	1.6	0.0	ОК
2880	min 1	Winter	8.559	0.059	0.0	1.3	1.3	0.0	ОК
4320	min 1	Winter	8.549	0.049	0.0	1.0	1.0	0.0	ОК
5760	min 1	Winter	8.544	0.044	0.0	0.8	0.8	0.0	ОК
7200	min 1	Winter	8.541	0.041	0.0	0.7	0.7	0.0	ОК
8640	min 1	Winter	8.539	0.039	0.0	0.6	0.6	0.0	ΟK
10080	min 1	Winter	8.537	0.037	0.0	0.6	0.6	0.0	ΟK

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0			50 000	0 0	10.0	0.1
30	min	Winter	59.880	0.0	18.6	21
60	min	Winter	40.721	0.0	25.3	38
120	min	Winter	26.227	0.0	32.6	66
180	min	Winter	20.088	0.0	37.5	96
240	min	Winter	16.566	0.0	41.2	124
360	min	Winter	12.577	0.0	46.9	184
480	min	Winter	10.324	0.0	51.3	242
600	min	Winter	8.850	0.0	55.0	300
720	min	Winter	7.800	0.0	58.2	362
960	min	Winter	6.386	0.0	63.5	486
1440	min	Winter	4.811	0.0	71.8	732
2160	min	Winter	3.624	0.0	81.1	1080
2880	min	Winter	2.964	0.0	88.4	1452
4320	min	Winter	2.228	0.0	99.7	2128
5760	min	Winter	1.817	0.0	108.4	2976
7200	min	Winter	1.550	0.0	115.6	3408
8640	min	Winter	1.361	0.0	121.8	4560
10080	min	Winter	1.219	0.0	127.3	5096

	Page 3
210321 - Cairston Road North	
Road-side Filter Drain 1	L
	Micco
Designed by JMA	Desinado
Checked by JMA	Diamaye
Source Control 2017.1.2	
	210321 - Cairston Road North Road-side Filter Drain 1 Designed by JMA Checked by JMA Source Control 2017.1.2

Rainfall Details

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	200	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	13.000	Shortest Storm (mins)	15
Ratio R	0.250	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+35

Time Area Diagram

Total Area (ha) 0.074

Time	(mins)	Area
From:	To:	(ha)

0 4 0.074

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 1	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safety	Factor	2.0		Slope (1:X)	15.0
	P	orosity	0.35		Cap Volume Depth (m)	0.000
	Invert Le	vel (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench Wi	dth (m)	1.0		Number of Pipes	1
	Trench Len	gth (m)	12.0			

Orifice Outflow Control

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Desinado
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 0 minutes.

	Storm	n	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(l/s)	(m³)	
15	min	Summer	8.581	0.081	0.0	2.2	2.2	0.0	ОК
30	min	Summer	8.577	0.077	0.0	2.0	2.0	0.0	ΟK
60	min	Summer	8.567	0.067	0.0	1.6	1.6	0.0	ОК
120	min	Summer	8.553	0.053	0.0	1.1	1.1	0.0	ΟK
180	min	Summer	8.546	0.046	0.0	0.9	0.9	0.0	ΟK
240	min	Summer	8.543	0.043	0.0	0.8	0.8	0.0	ΟK
360	min	Summer	8.538	0.038	0.0	0.6	0.6	0.0	ОК
480	min	Summer	8.536	0.036	0.0	0.5	0.5	0.0	ОК
600	min	Summer	8.533	0.033	0.0	0.4	0.4	0.0	ОК
720	min	Summer	8.531	0.031	0.0	0.4	0.4	0.0	ΟK
960	min	Summer	8.528	0.028	0.0	0.3	0.3	0.0	ΟK
1440	min	Summer	8.526	0.026	0.0	0.3	0.3	0.0	ОК
2160	min	Summer	8.522	0.022	0.0	0.2	0.2	0.0	ОК
2880	min	Summer	8.521	0.021	0.0	0.2	0.2	0.0	ОК
4320	min	Summer	8.518	0.018	0.0	0.1	0.1	0.0	ОК
5760	min	Summer	8.517	0.017	0.0	0.1	0.1	0.0	ОК
7200	min	Summer	8.517	0.017	0.0	0.1	0.1	0.0	ОК
8640	min	Summer	8.514	0.014	0.0	0.1	0.1	0.0	ОК
10080	min	Summer	8.514	0.014	0.0	0.1	0.1	0.0	0 K
15	min 1	Winter	8.581	0.081	0.0	2.2	2.2	0.0	0 K
					0.0		=•=		

Storm		Rain	Flooded	Discharge	Time-Peak		
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	19.000	0.0	0.9	10	
30	min	Summer	13.218	0.0	1.2	17	
60	min	Summer	8.918	0.0	1.6	32	
120	min	Summer	5.920	0.0	2.1	62	
180	min	Summer	4.641	0.0	2.5	94	
240	min	Summer	3.903	0.0	2.8	120	
360	min	Summer	3.055	0.0	3.3	184	
480	min	Summer	2.569	0.0	3.7	238	
600	min	Summer	2.246	0.0	4.0	306	
720	min	Summer	2.013	0.0	4.3	366	
960	min	Summer	1.694	0.0	4.9	476	
1440	min	Summer	1.326	0.0	5.7	724	
2160	min	Summer	1.034	0.0	6.7	1120	
2880	min	Summer	0.866	0.0	7.5	1464	
4320	min	Summer	0.675	0.0	8.7	2120	
5760	min	Summer	0.566	0.0	9.8	2896	
7200	min	Summer	0.494	0.0	10.6	3544	
8640	min	Summer	0.441	0.0	11.4	4344	
10080	min	Summer	0.401	0.0	12.0	4960	
15	min	Winter	19.000	0.0	1.0	10	
		©198	82-2017	XP Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L.
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
30	min W	linter	8.571	0.071	0.0	1.8	1.8	0.0	ОК
60	min W	linter	8.557	0.057	0.0	1.2	1.2	0.0	ОК
120	min W	linter	8.544	0.044	0.0	0.8	0.8	0.0	ΟK
180	min W	linter	8.540	0.040	0.0	0.7	0.7	0.0	ОК
240	min W	linter	8.537	0.037	0.0	0.6	0.6	0.0	ΟK
360	min W	linter	8.533	0.033	0.0	0.4	0.4	0.0	ОК
480	min W	linter	8.530	0.030	0.0	0.4	0.4	0.0	ОК
600	min W	linter	8.528	0.028	0.0	0.3	0.3	0.0	ОК
720	min W	linter	8.526	0.026	0.0	0.3	0.3	0.0	ОК
960	min W	linter	8.525	0.025	0.0	0.3	0.3	0.0	ОК
1440	min W	linter	8.521	0.021	0.0	0.2	0.2	0.0	ОК
2160	min W	linter	8.519	0.019	0.0	0.2	0.2	0.0	ОК
2880	min W	linter	8.518	0.018	0.0	0.1	0.1	0.0	ОК
4320	min W	linter	8.516	0.016	0.0	0.1	0.1	0.0	ОК
5760	min W	linter	8.515	0.015	0.0	0.1	0.1	0.0	ΟK
7200	min W	linter	8.513	0.013	0.0	0.1	0.1	0.0	ΟK
8640	min W	linter	8.512	0.012	0.0	0.1	0.1	0.0	ΟK
10080	min W	linter	8.512	0.012	0.0	0.1	0.1	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	13.218	0.0	1.3	17
60	min	Winter	8.918	0.0	1.8	32
120	min	Winter	5.920	0.0	2.4	58
180	min	Winter	4.641	0.0	2.8	94
240	min	Winter	3.903	0.0	3.1	120
360	min	Winter	3.055	0.0	3.7	176
480	min	Winter	2.569	0.0	4.1	234
600	min	Winter	2.246	0.0	4.5	292
720	min	Winter	2.013	0.0	4.9	372
960	min	Winter	1.694	0.0	5.5	486
1440	min	Winter	1.326	0.0	6.4	728
2160	min	Winter	1.034	0.0	7.5	1140
2880	min	Winter	0.866	0.0	8.4	1508
4320	min	Winter	0.675	0.0	9.8	1980
5760	min	Winter	0.566	0.0	10.9	3040
7200	min	Winter	0.494	0.0	11.9	3600
8640	min	Winter	0.441	0.0	12.8	4528
10080	min	Winter	0.401	0.0	13.5	4896

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Dialitatje
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	1 Cv (Summer)	0.750
Region Scotla	and and Ireland Cv (Winter)	0.840

Region Scotland and IrelandCv (Winter)0.840M5-60 (mm)13.000 Shortest Storm (mins)15Ratio R0.250 Longest Storm (mins)10080Summer StormsYesClimate Change %+0

<u>Time Area Diagram</u>

Total Area (ha) 0.024

Time	(mins)	Area
From:	To:	(ha)

0 4 0.024

٦

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L.
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Desinado
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safety 1	Factor	2.0		Slope (1:X)	15.0
	Po:	rosity	0.35		Cap Volume Depth (m)	0.000
	Invert Leve	el (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench Wid	th (m)	1.0		Number of Pipes	1
	Trench Leng	th (m)	21.0			

Orifice Outflow Control

Cameron & Ross		Page 1
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Dcaipago
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

Half Drain Time : 0 minutes.

	Storm	n	Max	Max	Max	Max	Max	Max	Status
	Event	5	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
1.5		~	0 600	0 100	0.0	2.0	2.0	0 1	o
15	min	Summer	8.622	0.122	0.0	3.8	3.8	0.1	ΟK
30	mın	Summer	8.612	0.112	0.0	3.5	3.5	0.0	ΟK
60	min	Summer	8.593	0.093	0.0	2.7	2.7	0.0	ОК
120	min	Summer	8.575	0.075	0.0	1.9	1.9	0.0	ΟK
180	min	Summer	8.565	0.065	0.0	1.5	1.5	0.0	ΟK
240	min	Summer	8.558	0.058	0.0	1.3	1.3	0.0	ΟK
360	min	Summer	8.548	0.048	0.0	1.0	1.0	0.0	ОК
480	min	Summer	8.545	0.045	0.0	0.9	0.9	0.0	ОК
600	min	Summer	8.542	0.042	0.0	0.7	0.7	0.0	ОК
720	min	Summer	8.540	0.040	0.0	0.7	0.7	0.0	ОК
960	min	Summer	8.537	0.037	0.0	0.5	0.5	0.0	ОК
1440	min	Summer	8.532	0.032	0.0	0.4	0.4	0.0	ОК
2160	min	Summer	8.528	0.028	0.0	0.3	0.3	0.0	ОК
2880	min	Summer	8.525	0.025	0.0	0.3	0.3	0.0	ОК
4320	min	Summer	8.522	0.022	0.0	0.2	0.2	0.0	ОК
5760	min	Summer	8.521	0.021	0.0	0.2	0.2	0.0	ОК
7200	min	Summer	8.519	0.019	0.0	0.2	0.2	0.0	ОК
8640	min	Summer	8.518	0.018	0.0	0.1	0.1	0.0	ОК
10080	min	Summer	8.517	0.017	0.0	0.1	0.1	0.0	0 K
15	min	Winter	8 622	0 122	0.0	3.8	3.8	0.0	0 K
10			0.022	0.122	0.0	5.0	5.0	0.1	0 10

	Stor	m	Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	33.317	0.0	1.5	10	
30	min	Summer	23.154	0.0	2.1	17	
60	min	Summer	15.530	0.0	2.8	32	
120	min	Summer	10.149	0.0	3.7	62	
180	min	Summer	7.867	0.0	4.2	92	
240	min	Summer	6.555	0.0	4.7	124	
360	min	Summer	5.058	0.0	5.5	182	
480	min	Summer	4.204	0.0	6.1	242	
600	min	Summer	3.641	0.0	6.6	302	
720	min	Summer	3.236	0.0	7.0	368	
960	min	Summer	2.686	0.0	7.7	478	
1440	min	Summer	2.065	0.0	8.9	712	
2160	min	Summer	1.587	0.0	10.3	1080	
2880	min	Summer	1.317	0.0	11.4	1460	
4320	min	Summer	1.011	0.0	13.1	2132	
5760	min	Summer	0.838	0.0	14.4	2872	
7200	min	Summer	0.725	0.0	15.6	3480	
8640	min	Summer	0.643	0.0	16.6	4208	
10080	min	Summer	0.582	0.0	17.5	5096	
15	min	Winter	33.317	0.0	1.7	10	
		©198	32-2017	XP Sol	utions		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L.
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 10 year Return Period

	Storm Event	L :	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
30	min V	Winter	8.602	0.102	0.0	3.1	3.1	0.0	ОК
60	min V	Winter	8.581	0.081	0.0	2.2	2.2	0.0	ОК
120	min V	Winter	8.563	0.063	0.0	1.4	1.4	0.0	ОК
180	min V	Winter	8.553	0.053	0.0	1.1	1.1	0.0	ОК
240	min V	Winter	8.547	0.047	0.0	0.9	0.9	0.0	ОК
360	min V	Winter	8.542	0.042	0.0	0.7	0.7	0.0	ОК
480	min V	Winter	8.539	0.039	0.0	0.6	0.6	0.0	ОК
600	min V	Winter	8.536	0.036	0.0	0.5	0.5	0.0	ОК
720	min V	Winter	8.534	0.034	0.0	0.5	0.5	0.0	ОК
960	min V	Winter	8.530	0.030	0.0	0.4	0.4	0.0	ОК
1440	min V	Winter	8.527	0.027	0.0	0.3	0.3	0.0	ОК
2160	min V	Winter	8.524	0.024	0.0	0.2	0.2	0.0	ОК
2880	min V	Winter	8.521	0.021	0.0	0.2	0.2	0.0	ОК
4320	min V	Winter	8.519	0.019	0.0	0.2	0.2	0.0	ОК
5760	min V	Winter	8.518	0.018	0.0	0.1	0.1	0.0	ОК
7200	min V	Winter	8.517	0.017	0.0	0.1	0.1	0.0	ОК
8640	min V	Winter	8.516	0.016	0.0	0.1	0.1	0.0	ОК
10080	min V	Winter	8.515	0.015	0.0	0.1	0.1	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	23.154	0.0	2.3	17
60	min	Winter	15.530	0.0	3.1	32
120	min	Winter	10.149	0.0	4.1	60
180	min	Winter	7.867	0.0	4.8	88
240	min	Winter	6.555	0.0	5.3	126
360	min	Winter	5.058	0.0	6.1	180
480	min	Winter	4.204	0.0	6.8	260
600	min	Winter	3.641	0.0	7.3	310
720	min	Winter	3.236	0.0	7.8	360
960	min	Winter	2.686	0.0	8.7	472
1440	min	Winter	2.065	0.0	10.0	718
2160	min	Winter	1.587	0.0	11.5	1104
2880	min	Winter	1.317	0.0	12.7	1452
4320	min	Winter	1.011	0.0	14.7	2140
5760	min	Winter	0.838	0.0	16.2	2848
7200	min	Winter	0.725	0.0	17.5	3976
8640	min	Winter	0.643	0.0	18.6	3840
10080	min	Winter	0.582	0.0	19.6	5168

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	4
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Diamatje
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms 10 Cv (Summer) 0 nd and Ireland Cv (Winter) 0 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 10 Yes Climate Change %	Yes .750 .840 15 0080 +0
Tin	ne Area Diagram	
Tota	al Area (ha) 0.024	
Ti Fr	me (mins) Area om: To: (ha)	
	0 4 0.024	
©1982-	-2017 XP Solutions	

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safety	Factor	2.0		Slope (1:X)	15.0
	Pc	prosity	0.35		Cap Volume Depth (m)	0.000
	Invert Lev	vel (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench Wid	lth (m)	1.0		Number of Pipes	1
	Trench Leng	gth (m)	21.0			

Orifice Outflow Control

Cameron & Ross		Page 1
		Taye I
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	Ly
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Drainage
CADS	Source Control 2017 1 2	
	504100 00101 2017.1.2	
Summary of Posults	for 30 year Peturn Period (+35%)	
Summary of Results	tor 50 year Neturn reriod (1558)	
Half D.	cain Time : 0 minutes.	
Storm Max Max	Max Max Max Max	Status
Event Level Depth	Infiltration Control Σ Outflow Volume	
(m) (m)	$(1/s)$ $(1/s)$ $(1/s)$ (m^3)	
15 min Summer 8.737 0.237	0.0 5.9 5.9 0.2	ОК
30 min Summer 8.722 0.222	0.0 5.7 5.7 0.2	O K
60 min Summer 8.653 0.153	0.0 4.5 4.5 0.1	ОК
120 min Summer 8.606 0.106	0.0 3.3 3.3 0.0	ОК
180 min Summer 8.591 0.091	0.0 2.6 2.6 0.0	O K
240 min Summer 8.581 0.081	0.0 2.2 2.2 0.0	O K
360 min Summer 8.569 0.069	0.0 1.7 1.7 0.0	0 K
480 min Summer 8.561 0.061	0.0 1.4 1.4 0.0	ОК
600 min Summer 8.555 0.055		OK
720 min Summer 8.531 0.031		OK
1440 min Summer 8 541 0 041		0 K
2160 min Summer 8.536 0.036	0.0 0.5 0.5 0.0	0 K
2880 min Summer 8.532 0.032	0.0 0.4 0.4 0.0	ОК
4320 min Summer 8.528 0.028	0.0 0.3 0.3 0.0	ОК
5760 min Summer 8.526 0.026	0.0 0.3 0.3 0.0	O K
7200 min Summer 8.525 0.025	0.0 0.3 0.3 0.0	O K
8640 min Summer 8.522 0.022	0.0 0.2 0.2 0.0	O K
10080 min Summer 8.521 0.021	0.0 0.2 0.2 0.0	ОК
15 min Winter 8.741 0.241	0.0 6.0 6.0 0.2	ОК
Storm	Rain Flooded Discharge Time-Peak	
Event (r	m/hr) Volume Volume (mins)	
	(m ³) (m ³)	
15 min Summer	6.548 0.0 2.5 11	
30 min Summer	39.673 0.0 3.6 18	
60 min Summer	26.745 0.0 4.8 32	
120 min Summer	7.385 0.0 6.3 62	
180 min Summer 3	.3.417 0.0 7.2 92	
240 min Summer 2	1.137 0.0 8.0 124	

		-	(/			(,
				(m³)	(m³)	
15	min	Summer	56.548	0.0	2.5	11
30	min	Summer	39.673	0.0	3.6	18
60	min	Summer	26.745	0.0	4.8	32
120	min	Summer	17.385	0.0	6.3	62
180	min	Summer	13.417	0.0	7.2	92
240	min	Summer	11.137	0.0	8.0	124
360	min	Summer	8.542	0.0	9.2	182
480	min	Summer	7.068	0.0	10.2	244
600	min	Summer	6.098	0.0	11.0	298
720	min	Summer	5.403	0.0	11.7	366
960	min	Summer	4.463	0.0	12.9	480
1440	min	Summer	3.406	0.0	14.7	712
2160	min	Summer	2.598	0.0	16.8	1064
2880	min	Summer	2.144	0.0	18.5	1460
4320	min	Summer	1.634	0.0	21.2	2164
5760	min	Summer	1.346	0.0	23.2	2832
7200	min	Summer	1.158	0.0	25.0	3656
8640	min	Summer	1.024	0.0	26.4	4264
10080	min	Summer	0.923	0.0	27.8	5176
15	min	Winter	56.548	0.0	2.9	11
		©198	82-2017	XP Solu	tions	

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Desinado
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 30 year Return Period (+35%)

	Storn Event	n t	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
2.0			0 607	0 1 0 7	0.0	F 1	F 1	0 1	0.77
30	min	Winter	8.68/	0.18/	0.0	5.1	5.1	0.1	ΟK
60	min	Winter	8.617	0.117	0.0	3.7	3.7	0.0	ΟK
120	min	Winter	8.587	0.087	0.0	2.4	2.4	0.0	ΟK
180	min	Winter	8.574	0.074	0.0	1.9	1.9	0.0	ΟK
240	min	Winter	8.567	0.067	0.0	1.6	1.6	0.0	ОК
360	min	Winter	8.556	0.056	0.0	1.2	1.2	0.0	ОК
480	min	Winter	8.549	0.049	0.0	1.0	1.0	0.0	ОК
600	min	Winter	8.546	0.046	0.0	0.9	0.9	0.0	ОК
720	min	Winter	8.543	0.043	0.0	0.8	0.8	0.0	ОК
960	min	Winter	8.540	0.040	0.0	0.7	0.7	0.0	ОК
1440	min	Winter	8.535	0.035	0.0	0.5	0.5	0.0	ΟK
2160	min	Winter	8.530	0.030	0.0	0.4	0.4	0.0	ОК
2880	min	Winter	8.528	0.028	0.0	0.3	0.3	0.0	ОК
4320	min	Winter	8.524	0.024	0.0	0.2	0.2	0.0	ΟK
5760	min	Winter	8.522	0.022	0.0	0.2	0.2	0.0	ОК
7200	min	Winter	8.522	0.022	0.0	0.2	0.2	0.0	ОК
8640	min	Winter	8.520	0.020	0.0	0.2	0.2	0.0	ΟK
10080	min	Winter	8.518	0.018	0.0	0.1	0.1	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	39.673	0.0	4.0	18
60	min	Winter	26.745	0.0	5.4	32
120	min	Winter	17.385	0.0	7.0	64
180	min	Winter	13.417	0.0	8.1	92
240	min	Winter	11.137	0.0	9.0	116
360	min	Winter	8.542	0.0	10.3	180
480	min	Winter	7.068	0.0	11.4	240
600	min	Winter	6.098	0.0	12.3	310
720	min	Winter	5.403	0.0	13.1	346
960	min	Winter	4.463	0.0	14.4	460
1440	min	Winter	3.406	0.0	16.5	724
2160	min	Winter	2.598	0.0	18.9	1124
2880	min	Winter	2.144	0.0	20.7	1492
4320	min	Winter	1.634	0.0	23.7	2084
5760	min	Winter	1.346	0.0	26.0	2576
7200	min	Winter	1.158	0.0	28.0	3720
8640	min	Winter	1.024	0.0	29.7	4552
10080	min	Winter	0.923	0.0	31.2	4560

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	4
AB10 1XB		- un
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Urainage
CADS	Source Control 2017.1.2	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	30 Cv (Summer) 0	.750
Region Scotla	nd and Ireland Cv (Winter) 0	.840
Batio B	0.250 Longest Storm (mins) 1	1080
Summer Storms	Yes Climate Change %	+35
Tin	ne Area Diagram	
Tota	al Area (ha) 0.024	
Ti Fr	me (mins) Area om: To: (ha)	
	0 4 0.024	
©1982-	-2017 XP Solutions	

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Dcainago
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safety	Factor	2.0		Slope (1:X)	15.0
	P	orosity	0.35		Cap Volume Depth (m)	0.000
	Invert Le	vel (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench Wi	dth (m)	1.0		Number of Pipes	1
	Trench Len	gth (m)	21.0			

Orifice Outflow Control

Cameron & R	055							Page 1	
15 Victoria	Street		2103	321 - 0	airston	Road No	rth		
15 VICCOIId	DELCEE		Door		Eiltor F	modu no		4	
Aberdeen			ROad	i-side	FIILEI L	Jiain Z			(m
ABIO IXB								Mirro	
Date 07/03/	2024		Desi	.gned k	DY JMA			Drain	апо
File 210321	- Roadsid	de Filte	. Chec	cked by	/ JMA			Diall	aye
CADS			Sour	cce Cor	ntrol 201	7.1.2			
	Summary o	of Results	for 10	00 year	r Return	Period	(+35%))	
		Half	Drain T	ime : 1	minutes.				
	Storm	Max Max	м	ax	Max	Max	Max	Status	
	Event	Level Dept	n Infilt	ration	Control E	Outflow	Volume		
		(m) (m)	(1	/s)	(l/s)	(l/s)	(m³)		
15	min Cummor	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	0 0	7 0	7 0	0 1	0 K	
30	min Summer	8 812 0 31	2	0.0	7.2	7.2	0.4	0 K	
60	min Summer	8.725 0.22	5	0.0	5.7	5.7	0.2	0 K	
120	min Summer	8.638 0.13	3	0.0	4.2	4.2	0.1	ОК	
180	min Summer	8.608 0.10	3	0.0	3.4	3.4	0.0	ОК	
240	min Summer	8.596 0.09	5	0.0	2.8	2.8	0.0	ОК	
360	min Summer	8.580 0.08)	0.0	2.1	2.1	0.0	ОК	
480	min Summer	8.571 0.07	L	0.0	1.8	1.8	0.0	ОК	
600	min Summer	8.565 0.06	5	0.0	1.5	1.5	0.0	ΟK	
720	min Summer	8.560 0.06)	0.0	1.4	1.4	0.0	ОК	
960	min Summer	8.552 0.053	2	0.0	1.1	1.1	0.0	ΟK	
1440	min Summer	8.545 0.04	5	0.0	0.9	0.9	0.0	ОК	
2160	min Summer	8.540 0.04)	0.0	0.7	0.7	0.0	ОК	
2880	min Summer	8.53/ 0.03	/	0.0	0.6	0.6	0.0	O K	
4320	min Summer	8.531 U.U3	L D	0.0	0.4	0.4	0.0	OK	
7200	min Summer	8 526 0 02	5	0.0	0.3	0.3	0.0	0 K	
8640	min Summer	8 524 0 02	1	0.0	0.3	0.3	0.0	0 K	
10080	min Summer	8.523 0.02	3	0.0	0.2	0.2	0.0	O K	
15	min Winter	8.839 0.33	9	0.0	7.3	7.3	0.4	ОК	
		Storm	Rain	Floode	d Discharg	ge Time-P	eak		
		Event	(mm/hr)	Volume	volume	(mins	3)		
				(m³)	(m³)				
	15	min Summer	72.673	0.	0 3.	3	11		
	30	min Summer	51.518	0.	0 4.	6	18		
	60	min Summer	34.923	0.	0 6.	3	34		
	120	min Summer	22.569	0.	0 8.	1	62		
	180	min Summer	17.334	0.	0 9.	4	92		
	240	min Summer	14.329	0.	0 10.	3	122		
	360	min Summer	10.919	0.	0 11.	8	184		
	480	min Summer	8.989	0.	0 12.	9	240		
	600	min Summer	7.724	0.	0 13.	9	298		
	720	min Summer	6.821	0.	U 14.	/	364		
	960	mın Summer	5.602	0.	U 16.	T	480		

4.241

3.209

2.633

1.989

1.628

1.394

1.227

1.101

72.673

960 min Summer 1440 min Summer

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

15 min Winter

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2017 XP Solutions

18.3

20.8

22.8 25.8 28.1

30.0

31.7

33.2

3.7

730

1076

1424

2176

2840

3544

4408

5000

11

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Dcainago
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+35%)

	Storn Event	n -	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
		-	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min	Winter	8.771	0.271	0.0	6.4	6.4	0.3	ОК
60	min	Winter	8.667	0.167	0.0	4.8	4.8	0.1	ΟK
120	min	Winter	8.604	0.104	0.0	3.2	3.2	0.0	ΟK
180	min	Winter	8.587	0.087	0.0	2.5	2.5	0.0	ОК
240	min	Winter	8.577	0.077	0.0	2.0	2.0	0.0	ОК
360	min	Winter	8.566	0.066	0.0	1.5	1.5	0.0	ΟK
480	min	Winter	8.558	0.058	0.0	1.3	1.3	0.0	ОК
600	min	Winter	8.552	0.052	0.0	1.1	1.1	0.0	ОК
720	min	Winter	8.549	0.049	0.0	1.0	1.0	0.0	ОК
960	min	Winter	8.544	0.044	0.0	0.8	0.8	0.0	ОК
1440	min	Winter	8.539	0.039	0.0	0.6	0.6	0.0	ОК
2160	min	Winter	8.534	0.034	0.0	0.5	0.5	0.0	ΟK
2880	min	Winter	8.530	0.030	0.0	0.4	0.4	0.0	ΟK
4320	min	Winter	8.527	0.027	0.0	0.3	0.3	0.0	ΟK
5760	min	Winter	8.525	0.025	0.0	0.3	0.3	0.0	ОК
7200	min	Winter	8.522	0.022	0.0	0.2	0.2	0.0	ОК
8640	min	Winter	8.523	0.023	0.0	0.2	0.2	0.0	ΟK
10080	min	Winter	8.521	0.021	0.0	0.2	0.2	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	51.518	0.0	5.2	18
60	min	Winter	34.923	0.0	7.0	32
120	min	Winter	22.569	0.0	9.1	62
180	min	Winter	17.334	0.0	10.5	90
240	min	Winter	14.329	0.0	11.6	122
360	min	Winter	10.919	0.0	13.2	178
480	min	Winter	8.989	0.0	14.5	242
600	min	Winter	7.724	0.0	15.6	298
720	min	Winter	6.821	0.0	16.5	360
960	min	Winter	5.602	0.0	18.1	498
1440	min	Winter	4.241	0.0	20.5	730
2160	min	Winter	3.209	0.0	23.3	1020
2880	min	Winter	2.633	0.0	25.5	1476
4320	min	Winter	1.989	0.0	28.9	2004
5760	min	Winter	1.628	0.0	31.5	3112
7200	min	Winter	1.394	0.0	33.7	3584
8640	min	Winter	1.227	0.0	35.6	4608
10080	min	Winter	1.101	0.0	37.3	5216

15 Victoria Street Aberdeen Aberdeen Alei 128 Date 07/03/2024 File 210321 - Roadside Filte CADB Bainfall Model Bainfall Details Bainfall Model Bainfall Model Bainfall Model Bainfall Model Bainfall Model Bainfall Model Bainfall Details Bainfall Model Bainfall Details Bainfall Model Bainfall Details Bainfall Model Bainfall Details Bainfall Model Bainfall Details Bainfall Model Bainfall Model Bainfall Details Bainfall Model Bainfall Details Bainfall Model Bainfall Details Bainfall Model Bainfall Details Bainfall Model Bainfall Details Bainfall Details Bai	Cameron & Ross		Page 3
Aberloem Road-side Filter Drain 2 Abte 07/03/2024 Designed by JMA CADB Source Control 2017.1.2 CADB Source Control 2017.1.2 <td>15 Victoria Street</td> <td>210321 - Cairston Road North</td> <td></td>	15 Victoria Street	210321 - Cairston Road North	
AB10 1XB Designed by JWA Decided by JWA Chocked by JWA Checked by JWA Decided by JWA Chocked by JWA Checked by JWA Decided by JWA Chocked by JWA Checked by JWA Decided by JWA Chocked by JWA Decided by JWA Decided by JWA Chocked by JWA Checked by JWA Decided by JWA Chocked by JWA Decided by JWA Decided by JWA Chocked by JWA Decided by JWA Decided by JWA Chocked by JWA Decided by JWA Decided by JWA Chocked by JWA Decided by JWA Decided by JWA Chocked by JWA Document Storm (sino) Decided by JWA Decided by JWA Summer Storms Yes Climate Change & 435 Decided by JWA June Area Diagram Total Area (ha) 0.024 Document Change & 435 June Area Diagram O 4 0.024 Document Change & 435	Aberdeen	Road-side Filter Drain 2	4
Dete 07/03/2024 File 210321 - Roadside Filte CADS Source Control 2017.1.2 Rainfall Model Rainfall Model Rainfall Model Rainfall Model Seturn Period (years) Region Soctland and Ireland Of (Summer 0.750 Region Soctland and Ireland Ves Climate Change & t35 Time Area Diagram Total Area (ha) 0.024 Time mins) Area From: To: (ha) 0 4 0.024	AB10 1XB		- Com
Tel 210321 - Roadside Filte Checked by 'MA Conce Centrol 2017.1.2 A source Centrol 2017.1.2 Canton 1 2017.1.2 A source Centrol 2017.1.2 Anifall Model FSR Minter Storms Yes Rainfall Model FSR Minter Storms Yes Region Sociand and Trelady 100 CV (Winter) 0.780 Yes Yes Statio R 0.303 Longest Storm (mins) 105 Yes Yes Yes Statio R 0.303 Longest Storm (mins) 105 Yes Yes Yes Catla Area (ha) 0.024 Time mins) Area Yes Yes Yes Yes O 4 0.024 O 4 0.024 Yes Yes Yes Yes	Date 07/03/2024	Designed by JMA	
CADS Source Control 2017.1.2 Rainfall Details Return Period (years) 100 Cr (Summer) 0.540 M5-60 (m) 13.000 Shortest Storm (mins) 1080 Summer Storms Tree Climate Charge % 435 Time Area Diagram Total Area (ha) 0.024 Time (mins) Area From: To: (ha) 0 4 0.024	File 210321 - Roadside Filte	Checked by JMA	Urainage
<section-header><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></section-header>	CADS	Source Control 2017.1.2	
Painfall Petails Mainfall Model FN Ninter Storms (No. Region Scolland and Ireland CV (Numer) 0.700 NG-GO (No. 32.000 Shortest Storm (nins) 100 Sumer Storm Yes Climate Change 3 0.500 Sumer Storm Total Area (h) 0.021 0.500 0.500 0.500 O 4 0.024 0.500 0.500 0.500 0.500 Sumer Storm Total Area (h) 0.021 0.500 0.500 0.500 0.500 O 4 0.024 0.500 0.500 0.500 0.500 0.500 Sumer Storm Total Area (h) 0.021 0.500 0.500 0.500 0.500 Sumer Storm Total Area (h) 0.021 0.500 0.500 0.500 Sumer Storm <			
Rainfall ModelFSWinter Storme VesRegion Scotland and IrelandCV (Summer) 0.840Mice (m)10.000 Shotest Storm (mins)Main C2.50Jumer StormeYesCilmate Change S435Jumer StormeYesJumer S	Ra	infall Details	
Return Period (years) 100 Cv (Summer) 0.840 MS-60 (m) 13.000 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 15 Summer Storm Yes Climate Change Storest +35 Ime Area Diagram Total Area (ha) 0.024 Time (mins) Area Total Area (ha) 0.024 0 4 0.024	Rainfall Model	FSR Winter Storms	Yes
Region Scotland and Ireland Cv (Winter) 0.40 MS-60 (mm) 13.000 Shortest Storm (mins) 10080 Summer Storms Yes Climate Change % +35 <u>Fime Area Diagram</u> Total Area (ha) 0.024 <u>Time (mins) Area</u> From: To: (ha) 0 4 0.024	Return Period (years)	100 Cv (Summer) 0	.750
Note (m) 10.000 Shortest storm (mins) 1008 Summer Storms Yes Climate Change % +35 Time Area Diagram Total Area (ha) 0.024 Time (mins) Area Total Area (ha) 0.024 O 4 0.024	Region Scotla	nd and Ireland Cv (Winter) 0	.840
Yes Clinate Change % +35 Ime Area Diagram Total Area (ha) 0.024 Yes Clinate Change % +35 Ime (mins) Area From: To: 0 4 0.024	MS-60 (mm) Ratio R	0 250 Longest Storm (mins)	0080
Time Area Diagram Total Area (ha) 0.024 Time (mine) Area Tome Tere (ha) 0 4 0.024	Summer Storms	Yes Climate Change %	+35
Total Area (ha) 0.024 Time (mins) Area From: To: (ha) 0 4 0.024	Tin	ne Area Diagram	
Time (mins) Area From: To: (ha) 0 4 0.024	Tota	al Area (ha) 0.024	
Time (mins) Area From: To: (ha) 0 4 0.024		• • •	
0 4 0.024	Ti Fr	.me (mins) Area om: To: (ha)	
		0 4 0 024	
		0 - 0.02-	
©1000_0017_VD_0_104			
©1000 0017 VD 0-1014 - 11			
©1000_0017_VD_0_10+			
©1000 0017 VD 0-1044			
@1000_0017_VD_0_1			
@1000_0017_VD_0_1			
	<u></u>	2017 VP Solutions	

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L.
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safety 1	Factor	2.0		Slope (1:X)	15.0
	Po:	rosity	0.35		Cap Volume Depth (m)	0.000
	Invert Leve	el (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench Wid	th (m)	1.0		Number of Pipes	1
	Trench Leng	th (m)	21.0			

Orifice Outflow Control

								I	
Cameron & R	loss							Page	1
15 Victoria	Street		2103	321 - 0	Cairston	Road Nc	rth		
Aberdeen			Road	d-side	Filter D	rain 2		4	2.01
7010 1VD									Zm
ABIU IAB	0004							– Micr	0
Date 07/03/	2024		Desi	lgnea r	ру ЈМА			Drai	лапе
File 210321	- Roadsid	de Filte	. Chec	cked by	7 JMA			Didi	luge
CADS			Sour	cce Cor	ntrol 201	7.1.2			
	Summary o	of Results	for 20	00 year	r Return	Period	(+35%))	
		Half	Drain T	ime : 1	minutes.				
	Storm	Max Max	М	ax	Max	Max	Max	Status	
	Event	Level Depth	i Infilt	ration	Control Σ	Outflow	Volume		
		(m) (m)	(1	/s)	(1/s)	(1/s)	(m ³)		
15	min Summer	8.897 0.397		0.0	8.0	8.0	0.5	ОК	
30) min Summer	8.879 0.379)	0.0	7.8	7.8	0.5	ОК	
60) min Summer	8.784 0.284		0.0	6.6	6.6	0.3	ОК	
120) min Summer	8.669 0.169)	0.0	4.8	4.8	0.1	ΟK	
180) min Summer	8.623 0.123	;	0.0	3.9	3.9	0.1	0 K	
240) min Summer	8.605 0.105	j	0.0	3.2	3.2	0.0	ΟK	
360) min Summer	8.587 0.087		0.0	2.5	2.5	0.0	ΟK	
480) min Summer	8.578 0.078	5	0.0	2.0	2.0	0.0	ΟK	
600) min Summer	8.570 0.070)	0.0	1.7	1.7	0.0	ΟK	
720) min Summer	8.566 0.066		0.0	1.5	1.5	0.0	ОК	
960) min Summer	8.558 0.058	5	0.0	1.3	1.3	0.0	ОК	
1440) min Summer	8.548 0.048	5	0.0	1.0	1.0	0.0	ОК	
2100) min Summer) min Summer	0.542 0.042		0.0	0.7	0.7	0.0	OK	
4320) min Summer	8 533 0 033	ł	0.0	0.0	0.0	0.0	0 K	
5760) min Summer	8.530 0.030	,)	0.0	0.4	0.4	0.0	0 K	
7200) min Summer	8.528 0.028		0.0	0.3	0.3	0.0	0 K	
8640) min Summer	8.527 0.027		0.0	0.3	0.3	0.0	ΟK	
10080) min Summer	8.525 0.025	5	0.0	0.3	0.3	0.0	ОК	
15	o min Winter	8.907 0.407		0.0	8.1	8.1	0.5	ОК	
		Storm	Rain	Floode	d Discharg	e Time-P	eak		
		Event	(mm/hr)	Volume	e Volume	(mins	5)		
				(m³)	(m³)				
	15	min Summer	83.965	0.	0 3.	8	11		
	30	min Summer	59.880	0.	0 5.	4	19		
	60	min Summer	40.721	0.	0 7.	3	34		
	120	min Summer	26.227	0.	0 9.	4	64		
	180	min Summer	20.088	0.	0 10.	8	92		
	240	min Summer	16.566	0.	0 11.	9	122		
	360	min Summer	12.577	0.	0 13.	6	182		
	480	min Summer	10.324	0.	0 14.	9	242		
	600	min Summer	8.850	0.	0 15.	9	306		
	720	min Summer	7 800	0	0 16	8	362		

16.8

18.4

20.8

23.5

25.6

28.9

31.4

33.4

35.2

36.7

4.2

362

478

716

1076

1448

2132

2840

3536

4440

4984

11

720 min Summer

960 min Summer

1440 min Summer

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

15 min Winter

10080 min Summer

7.800

6.386

4.811

3.624

2.964

2.228

1.817

1.550

1.361

1.219

83.965

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2017 XP Solutions

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L.
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Summary of Results for 200 year Return Period (+35%)

	Storm Max Max		Max	Max	Max	Max	Status		
	Event	5	(m)	Deptn (m)	(1/s)	(1/s)	Σ Outilow	(m ³)	
			(111)	(111)	(1/3)	(1/3)	(1/3)	(111)	
30	min	Winter	8.837	0.337	0.0	7.3	7.3	0.4	ОК
60	min	Winter	8.711	0.211	0.0	5.5	5.5	0.2	ОК
120	min	Winter	8.616	0.116	0.0	3.7	3.7	0.0	ОК
180	min	Winter	8.596	0.096	0.0	2.8	2.8	0.0	ΟK
240	min	Winter	8.585	0.085	0.0	2.4	2.4	0.0	ОК
360	min	Winter	8.572	0.072	0.0	1.8	1.8	0.0	ΟK
480	min	Winter	8.564	0.064	0.0	1.5	1.5	0.0	ΟK
600	min	Winter	8.557	0.057	0.0	1.3	1.3	0.0	ОК
720	min	Winter	8.553	0.053	0.0	1.1	1.1	0.0	ОК
960	min	Winter	8.547	0.047	0.0	0.9	0.9	0.0	ΟK
1440	min	Winter	8.541	0.041	0.0	0.7	0.7	0.0	ОК
2160	min	Winter	8.537	0.037	0.0	0.5	0.5	0.0	ОК
2880	min	Winter	8.532	0.032	0.0	0.4	0.4	0.0	ОК
4320	min	Winter	8.528	0.028	0.0	0.3	0.3	0.0	ОК
5760	min	Winter	8.526	0.026	0.0	0.3	0.3	0.0	ОК
7200	min	Winter	8.524	0.024	0.0	0.2	0.2	0.0	ΟK
8640	min	Winter	8.522	0.022	0.0	0.2	0.2	0.0	ОК
10080	min	Winter	8.522	0.022	0.0	0.2	0.2	0.0	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	59.880	0.0	6.0	19
60	min	Winter	40.721	0.0	8.2	34
120	min	Winter	26.227	0.0	10.6	62
180	min	Winter	20.088	0.0	12.2	94
240	min	Winter	16.566	0.0	13.4	128
360	min	Winter	12.577	0.0	15.2	182
480	min	Winter	10.324	0.0	16.7	244
600	min	Winter	8.850	0.0	17.8	304
720	min	Winter	7.800	0.0	18.9	366
960	min	Winter	6.386	0.0	20.6	482
1440	min	Winter	4.811	0.0	23.3	726
2160	min	Winter	3.624	0.0	26.3	1052
2880	min	Winter	2.964	0.0	28.7	1520
4320	min	Winter	2.228	0.0	32.3	2204
5760	min	Winter	1.817	0.0	35.2	2808
7200	min	Winter	1.550	0.0	37.5	3648
8640	min	Winter	1.361	0.0	39.4	4016
10080	min	Winter	1.219	0.0	41.2	4584

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Boad North	
Aberdeen	Road-side Filter Drain 2	4
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Desinado
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Rainfall Details

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	200	Cv (Summer)	0.750
Region	Scotland and Ireland	Cv (Winter)	0.840
M5-60 (mm)	13.000	Shortest Storm (mins)	15
Ratio R	0.250	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+35

Time Area Diagram

Total Area (ha) 0.024

Time	(mins)	Area
From:	To:	(ha)

0 4 0.024

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - Roadside Filte	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safety	Factor	2.0		Slope (1:X)	15.0
	P	orosity	0.35		Cap Volume Depth (m)	0.000
	Invert Le	vel (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench Wi	dth (m)	1.0		Number of Pipes	1
	Trench Len	gth (m)	21.0			

Orifice Outflow Control

Cameron & Ross							
15 Victoria Street		2103	321 - (Cairston F	Road Nc	orth	
Aberdeen		Road	d-side	Filter Dr	rain 2		L
AB10 1XB							Micco
Date 07/03/2024							
File 210321 - SuDS (Component	. Che	cked by	y JMA			Dialnage
CADS		Sou	rce Con	ntrol 2017	7.1.2		
Cascade Summary	of Results	for 2	10321	- Roadside	e Filte	er Dra:	in 2.SRCX
	Upstre	am		Outflow	To Over	flow To	
	Structu	res					
210321 -	Roadside Fi	lter Dra	in 1.SR	CX (Non	e)	(None)	
	Half	Drain I	lime : 1	minutes.			
Storm	Max Max	Ma	ax	Max	Max	Max	Status
Event	Level Dept	n Infilt	ration	Control E C	utflow	Volume	
	(m) (m)	(1	/s)	(1/s) ((1/s)	(m³)	
15 min Summer	r 8.828 0.32	3	0.0	7.2	7.2	0.4	O K
30 min Summer	r 8.816 0.31	6	0.0	7.0	7.0	0.3	O K
60 min Summer	r 8.738 0.23	3	0.0	5.9	5.9	0.2	ОК
120 min Summe:	r 8.650 0.150) =	0.0	4.4	4.4	0.1	OK
240 min Summe	r 8 602 0 10	2	0.0	3.7	3.7	0.0	OK
360 min Summe:	r 8.587 0.08	7	0.0	2.4	2.4	0.0	0 K
480 min Summe:	r 8.578 0.07	3	0.0	2.1	2.1	0.0	O K
600 min Summe:	r 8.572 0.072	2	0.0	1.8	1.8	0.0	O K
720 min Summe:	r 8.568 0.06	3	0.0	1.6	1.6	0.0	O K
960 min Summe:	r 8.561 0.06	1	0.0	1.4	1.4	0.0	ОК
2160 min Summer	r 8.551 0.05. r 8.546 0.04	L S	0.0	1.1	1.1	0.0	OK
2880 min Summer	1 8.542 0.043	2	0.0	0.7	0.7	0.0	O K
4320 min Summer	r 8.538 0.03	3	0.0	0.6	0.6	0.0	O K
5760 min Summer	r 8.535 0.03	5	0.0	0.5	0.5	0.0	O K
7200 min Summe:	r 8.532 0.03	2	0.0	0.4	0.4	0.0	O K
					.		
	Storm Event	Rain	F.Tooded	1 Discharge	Time-Pe	eak V	
	Event	(1111)	(m ³)	(m ³)	(1111)	,	
15	i min Summer	19.000	0.0	3.5		12	
30) min Summer	13.218	0.0	9 4.9		19	
60) min Summer	8.918	0.0	6.6		34	
120) min Summer	5.920	0.0	8.7		64 02	
) min Summer	4.041 3 003	0.0) 10.2	1	92 22	
360) min Summer	3.055	0.0) 13.5	1	182	
480) min Summer	2.569	0.0	15.1		242	
600) min Summer	2.246	0.0	16.5		302	
720) min Summer	2.013	0.0	17.8		358	
960) min Summer	1.694	0.0	J 19.9	4	188 719	
2160) min Summer	1.034	0.0	23.4	11	/ 1 0 1 0 4	
2880) min Summer	0.866	0.0	30.6	14	164	
4320) min Summer	0.675	0.0	35.7	22	240	
5760) min Summer	0.566	0.0	39.9	28	364	
7200) min Summer	0.494	0.0	43.4	35	560	
	©19	82-2017	7 XP Sc	lutions			
L							

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Dcaipago
File 210321 - SuDS Component	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Cascade Summary of Results for 210321 - Roadside Filter Drain 2.SRCX

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(l/s)	(m³)	
8640	min S	Summer	8.531	0.031	0.0	0.4	0.4	0.0	ОК
10080	min S	Summer	8.528	0.028	0.0	0.3	0.3	0.0	ОК
15	min W	linter	8.842	0.342	0.0	7.3	7.3	0.4	ОК
30	min W	Vinter	8.783	0.283	0.0	6.6	6.6	0.3	ОК
60	min W	Vinter	8.679	0.179	0.0	5.0	5.0	0.1	ОК
120	min W	Vinter	8.609	0.109	0.0	3.4	3.4	0.0	ОК
180	min W	Vinter	8.593	0.093	0.0	2.7	2.7	0.0	ΟK
240	min W	Vinter	8.584	0.084	0.0	2.3	2.3	0.0	ОК
360	min W	Vinter	8.571	0.071	0.0	1.8	1.8	0.0	ΟK
480	min W	Vinter	8.565	0.065	0.0	1.5	1.5	0.0	ОК
600	min W	Vinter	8.559	0.059	0.0	1.3	1.3	0.0	ОК
720	min W	Vinter	8.554	0.054	0.0	1.2	1.2	0.0	ОК
960	min W	Vinter	8.548	0.048	0.0	1.0	1.0	0.0	ОК
1440	min W	Vinter	8.544	0.044	0.0	0.8	0.8	0.0	ОК
2160	min W	Vinter	8.539	0.039	0.0	0.6	0.6	0.0	ΟK
2880	min W	Vinter	8.536	0.036	0.0	0.5	0.5	0.0	ОК
4320	min W	Vinter	8.531	0.031	0.0	0.4	0.4	0.0	ОК
5760	min W	Vinter	8.529	0.029	0.0	0.4	0.4	0.0	ОК
7200	min W	Vinter	8.527	0.027	0.0	0.3	0.3	0.0	ΟK
8640	min W	Vinter	8.526	0.026	0.0	0.3	0.3	0.0	ΟK
10080	min W	Vinter	8.526	0.026	0.0	0.3	0.3	0.0	ΟK

	Storm				d Discharge	Time-Peak	
	Even	t	(mm/hr)	Volum	e Volume	(mins)	
				(m³)	(m³)		
8640	min	Summer	0.441	0.	0 46.5	4352	
10080	min	Summer	0.401	0.	0 49.3	5128	
15	min	Winter	19.000	0.	0 3.9	12	
30	min	Winter	13.218	0.	0 5.4	19	
60	min	Winter	8.918	0.	0 7.3	34	
120	min	Winter	5.920	Ο.	0 9.7	62	
180	min	Winter	4.641	Ο.	0 11.5	92	
240	min	Winter	3.903	Ο.	0 12.9	122	
360	min	Winter	3.055	Ο.	0 15.1	178	
480	min	Winter	2.569	Ο.	0 16.9	236	
600	min	Winter	2.246	Ο.	0 18.5	306	
720	min	Winter	2.013	Ο.	0 19.9	356	
960	min	Winter	1.694	Ο.	0 22.3	488	
1440	min	Winter	1.326	0.	0 26.2	706	
2160	min	Winter	1.034	0.	0 30.6	1140	
2880	min	Winter	0.866	0.	0 34.2	1392	
4320	min	Winter	0.675	0.	0 40.0	2096	
5760	min	Winter	0.566	0.	0 44.7	3000	
7200	min	Winter	0.494	0.	0 48.7	3488	
8640	min	Winter	0.441	Ο.	0 52.2	4144	
10080	min	Winter	0.401	0.	0 55.3	5040	
		©198	82-2017	XP So	olutions		

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L.
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Drainage
File 210321 - SuDS Component	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Date 07/03/2024 File 210321 - SuDS Component CADS Cascade Rainfall Details fo Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms Tir Tot. Tf Fr	Designed by JMA Checked by JMA Source Control 2017.1.2 <u>r 210321 - Roadside Filter Drain</u> FSR Winter Storms 1 Cv (Summer) 0 and and Ireland Cv (Winter) 0 13.000 Shortest Storm (mins) 1 0.250 Longest Storm (mins) 1 Yes Climate Change % <u>ne Area Diagram</u> al Area (ha) 0.024 <u>ime (mins) Area</u> com: To: (ha) 0 4 0.024	2.SRCX Yes .750 .840 15 0080 +0
©1982-	-2017 XP Solutions	

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L.
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - SuDS Component	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Cascade Model Details for 210321 - Roadside Filter Drain 2.SRCX

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Bas	e (m	/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Sid	e (m	/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safet	y Fa	ctor	2.0		Slope (1:X)	15.0
		Poro	sity	0.35		Cap Volume Depth (m)	0.000
	Invert I	evel	(m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench W	idth	(m)	1.0		Number of Pipes	1
	Trench Le	ngth	(m)	21.0			

Orifice Outflow Control

Cameron & R	loss									Page 1
15 Victoria	Sti	reet			2103	321 - 0	Cairston	Road No	orth	5
Aberdeen					Road	d-side	Filter	Drain 2		Ly m
AB10 1XB					-					- Micro
Date 0//03/	2024	4			Desi	lgned 1	DY JMA			Drainage
F11e 210321	- 2	subs c		ent	Cned		/ JMA	17 1 2		J
CADS					5001		101 20	11.1.2		
Cascade	Sun	nmary	of Res	sults	for 2	10321	- Roadsi	de Filt	er Dra	in 2.SRCX
			_							
			st	ructur	m es		Outflo	w To Over	TIOW TO)
	21	0221	Doodoi		or Dra	in 1 CD	CV (N		(None)	
	21	0321 -	NUAUSI	le fiit	er Dia	111 1.56		one)	(NONE)	
				Half I	Drain T	ime : 1	minutes.			
	Stor	cm	Max	Max	Ма	ax	Max	Max	Max	Status
	Ever	nt	Level	Depth	Infilt	ration	Control D	Outflow	Volume	
			(m)	(m)	(1)	(S)	(1/S)	(1/S)	(m ³)	
15	min	Summer	9.068	0.568		0.0	9.7	9.7	1.0	O K
30	min mi~	Summer	9.074	0.574		0.0	9.8	9.8	1.0	O K
120	min min	Summer	0.909	0.489		0.0	9.U 7 2	9.U 7 2	0.8 N 4	OK
180	min	Summer	8.743	0.243		0.0	6.0	6.0	0.2	0 K
240	min	Summer	8.689	0.189		0.0	5.2	5.2	0.1	0 K
360	min	Summer	8.632	0.132		0.0	4.0	4.0	0.1	O K
480	min	Summer	8.608	0.108		0.0	3.4	3.4	0.0	O K
600	min	Summer	8.598	0.098		0.0	2.9	2.9	0.0	O K
720	min	Summer	8.591	0.091		0.0	2.6	2.6	0.0	O K
960	min	Summer	8.580	0.080		0.0	2.2	2.2	0.0	O K
1440	min	Summer	8.569	0.069		0.0	1.7	1.7	0.0	ОК
2160	min	Summer	8.559	0.059		0.0	1.3	1.3	0.0	OK
4320	min	Summer	0.JJZ 8 545	0.032		0.0	1.1	1.1	0.0	OK
5760	min	Summer	8.541	0.041		0.0	0.7	0.7	0.0	O K
7200	min	Summer	8.539	0.039		0.0	0.6	0.6	0.0	0 K
			Storm		Rain	Flooded	d Dischar	ge Time-P	eak	
			Event	(:	mm/hr)	Volume (m ³)	Volume (m³)	e (mins	5)	
		1 5	min C''	mmer	22 217	0 0) 6	1	13	
		30	min Su	mmer	23.154	0.0) 8	• - • 5	21	
		60	min Su	mmer	15.530	0.0) 11	. 4	36	
		120	min Su	mmer	10.149	0.0) 14	.9	64	
		180	min Su	mmer	7.867	0.0) 17	.3	94	
		240	min Su	mmer	6.555	0.0) 19	.3	124	
		360	min Su	mmer	5.058	0.0) 22	.3	182	
		480	min Su	mmer	4.204	0.0	24	.7	244	
		600	min Su	mmer	3.641	0.0	J 26	. X	304 266	
		120	min Su	mmer	J.230 2 696	0.0	, ∠8) 21		200 482	
		1440	min Su	mmer	2.065	0.0	, JI) 36	. 4	732	
		2160	min Su	mmer	1.587	0.0) 42	.0 1	096	
		2880	min Su	mmer	1.317	0.0	9 46	.5 1	432	
		4320	min Su	mmer	1.011	0.0	53	.5 2	196	
		5760	min Su	mmer	0.838	0.0) 59	.1 2	936	
		7200	min Su	mmer	0.725	0.0) 63	.9 3	696	
				©1982	2-2017	XP Sc	lutions			

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	4
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - SuDS Component	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Cascade Summary of Results for 210321 - Roadside Filter Drain 2.SRCX

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(1/s)	(m³)	
8640	min	Summer	8.539	0.039	0.0	0.6	0.6	0.0	ОК
10080	min	Summer	8.535	0.035	0.0	0.5	0.5	0.0	ОК
15	min	Winter	9.106	0.606	0.0	10.1	10.1	1.2	ΟK
30	min	Winter	9.068	0.568	0.0	9.7	9.7	1.0	ОК
60	min	Winter	8.910	0.410	0.0	8.1	8.1	0.6	ОК
120	min	Winter	8.727	0.227	0.0	5.8	5.8	0.2	ΟK
180	min	Winter	8.655	0.155	0.0	4.5	4.5	0.1	ОК
240	min	Winter	8.621	0.121	0.0	3.8	3.8	0.0	ОК
360	min	Winter	8.598	0.098	0.0	2.9	2.9	0.0	ОК
480	min	Winter	8.587	0.087	0.0	2.4	2.4	0.0	ОК
600	min	Winter	8.579	0.079	0.0	2.1	2.1	0.0	ОК
720	min	Winter	8.574	0.074	0.0	1.9	1.9	0.0	ОК
960	min	Winter	8.566	0.066	0.0	1.6	1.6	0.0	ОК
1440	min	Winter	8.556	0.056	0.0	1.2	1.2	0.0	ОК
2160	min	Winter	8.547	0.047	0.0	1.0	1.0	0.0	ОК
2880	min	Winter	8.544	0.044	0.0	0.8	0.8	0.0	ОК
4320	min	Winter	8.539	0.039	0.0	0.6	0.6	0.0	ОК
5760	min	Winter	8.536	0.036	0.0	0.5	0.5	0.0	ОК
7200	min	Winter	8.533	0.033	0.0	0.4	0.4	0.0	ΟK
8640	min	Winter	8.531	0.031	0.0	0.4	0.4	0.0	ΟK
10080	min	Winter	8.529	0.029	0.0	0.4	0.4	0.0	ΟK

S	torm	Rain	Flooded	Discharge	Time-Peak	
E	vent	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
8640 m	nin Summer	0.643	0.0	68.0	4360	
10080 m	nin Summer	0.582	0.0	71.7	5128	
15 m	nin Winter	33.317	0.0	6.9	13	
30 m	nin Winter	23.154	0.0	9.5	21	
60 m	nin Winter	15.530	0.0	12.8	36	
120 m	nin Winter	10.149	0.0	16.7	64	
180 m	nin Winter	7.867	0.0	19.4	94	
240 m	nin Winter	6.555	0.0	21.6	122	
360 m	nin Winter	5.058	0.0	25.0	180	
480 m	nin Winter	4.204	0.0	27.7	238	
600 m	nin Winter	3.641	0.0	30.0	304	
720 m	nin Winter	3.236	0.0	32.0	362	
960 m	nin Winter	2.686	0.0	35.4	476	
1440 m	nin Winter	2.065	0.0	40.8	694	
2160 m	nin Winter	1.587	0.0	47.0	1104	
2880 m	nin Winter	1.317	0.0	52.0	1444	
4320 m	nin Winter	1.011	0.0	59.9	2268	
5760 m	nin Winter	0.838	0.0	66.2	2816	
7200 m	nin Winter	0.725	0.0	71.5	3344	
8640 m	nin Winter	0.643	0.0	76.2	4320	
10080 m	nin Winter	0.582	0.0	80.3	5080	
	©198	82-2017	XP Sol	utions		

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	5
Aberdeen	Road-side Filter Drain 2	L.
AB10 1XB		Micro
Date 07/03/2024	Designed by JMA	Drainage
File 210321 - SuDS Component	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	
Date 07/03/2024 File 210321 - SuDS Component CADS Cascade Rainfall Details fo Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms <u>Tin</u> Tota Ti	Designed by JMA Checked by JMA Source Control 2017.1.2 or 210321 - Roadside Filter Drain FSR Winter Storms 10 Cv (Summer) 0 and and Ireland Cv (Winter) 0 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 1 Yes Climate Change % me Area Diagram al Area (ha) 0.024 ime (mins) Area com: To: (ha) 0 4 0.024	2.SRCX Yes .750 .840 15 0080 +0

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - SuDS Component	Checked by JMA	Dialitacje
CADS	Source Control 2017.1.2	

Cascade Model Details for 210321 - Roadside Filter Drain 2.SRCX

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient 1	Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient :	Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Sa	fety	Factor	2.0		Slope (1:X)	15.0
		Pc	prosity	0.35		Cap Volume Depth (m)	0.000
	Inver	t Lev	vel (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trenc	h Wic	dth (m)	1.0		Number of Pipes	1
	Trench	Leng	gth (m)	21.0			

Orifice Outflow Control

Diameter (m) 0.080 Discharge Coefficient 0.600 Invert Level (m) 8.500

©1982-2017 XP Solutions

Cameron & Ross										Page 1
15 Victoria Street						210321 - Cairston Road North				5
Aberdeen						d-side	Ly			
AB10 1XB										
Date 07/03/2024						igned b	Drainago			
File 210321 - SuDS Component					Cheo	Checked by JMA				Dianiaye
CADS Source Control 2017.1.2										
	~		6 D		c 0.	1 0 0 0 1			5	
Cascade	Sur	nmary	oi Res	sults	ior 2	10321	- Roads:	ide Filt	er Dra	in 2.SRCX
Upstream)			
			St	ructur	es					
	21	0321 -	Roadsid	de Filt	er Dra	in 1.SR	CX (N	lone)	(None)	
Half Drain Time • 2 minutes										
	Stor	rm ot	Max	Max	Ma Trifilt	ax ration	Max Control 3	Max Cutflow	Max	Status
	7161		(m)	(m)	(1,	/s)	(1/s)	(1/s)	(m ³)	
		~		0.005		<u> </u>	10.1			0.77
15	min min	Summer	9.365 9.417	U.865 0 917		0.0	12.1 12.5	12.1 12.5	2.3	O K
50 60	min	Summer	9.377	0.877		0.0	12.2	12.2	2.3	0 K
12.0	min	Summer	9.195	0.695		0.0	10.8	10.8	1.5	0 K
180	min	Summer	9.039	0.539		0.0	9.4	9.4	0.9	ΟK
240	min	Summer	8.930	0.430		0.0	8.3	8.3	0.6	O K
360	min	Summer	8.793	0.293		0.0	6.7	6.7	0.3	O K
480	min	Summer	8.719	0.219		0.0	5.6	5.6	0.2	O K
600	min	Summer	8.674	0.174		0.0	4.9	4.9	0.1	O K
720	min	Summer	8.645	0.145		0.0	4.3	4.3	0.1	O K
960	min	Summer	8.613	0.113		0.0	3.6	3.6	0.0	OK
1440 2160	min	Summer	8.594	0.094		0.0	2./	2.7	0.0	OK
2100	min	Summer	8 571	0.079		0.0	2.1	2.1	0.0	0 K 0 K
4320	min	Summer	8.559	0.059		0.0	1.3	1.3	0.0	0 K
5760	min	Summer	8.553	0.053		0.0	1.1	1.1	0.0	0 K
7200	min	Summer	8.549	0.049		0.0	1.0	1.0	0.0	O K
	Storm			Rain	Flooded	d Dischar	ge Time-P	eak		
			Event	(mm/hr)	Volume (m ³)	Volume (m ³)	e (mins	3)	
						, ,	· /			
		15	min Su	mmer	30.548	0.0	J 10	.4	⊥4 23	
		50	min Su	mmer	26.745	0.0) 19	. 7	20 38	
		120	min Su	mmer	17.385	0.0) 25	.6	68	
		180	min Su	mmer	13.417	0.0	29	.6	96	
		240	min Su	mmer	11.137	0.0) 32	.7	126	
		360	min Su	mmer	8.542	0.0	37	.7	184	
		480	min Su	mmer	7.068	0.0) 41	.6	244	
		600	min Su	mmer	6.098	0.0) 44	.8	302	
		720	min Su	mmer	5.403	0.0) 47	.7	364	
		960	min Su	mmer	4.463	0.0	J 52	.5	484	
		1440 2160	min Su	mmer	3.406	0.0	J 60	• 1	126 068	
		2880 2700	min Su	mmer	2.398	0.0	ט א דר ו	.0 L	000 436	
		4320	min Su	mmer	1.634	0.0) 86) 86	.5 2	156	
		5760	min Su	mmer	1.346	0.0) 95	.0 2	920	
		7200	min Su	mmer	1.158	0.0	102	.1 3	464	
				©1982	2-2017	XP Sc	lutions			
Cameron & Ross		Page 2								
------------------------------	------------------------------	-----------								
15 Victoria Street	210321 - Cairston Road North									
Aberdeen	Road-side Filter Drain 2	L								
AB10 1XB		Micco								
Date 07/03/2024	Designed by JMA									
File 210321 - SuDS Component	Checked by JMA	Dialitaye								
CADS	Source Control 2017.1.2									

Cascade Summary of Results for 210321 - Roadside Filter Drain 2.SRCX

	Storm	ı	Max	Max Max		Max	Max Max		Status
	Event	:	Level	Depth	Infiltration	Control	Control Σ Outflow		
			(m)	(m)	(l/s)	(l/s)	(l/s)	(m³)	
0.6.4.0		~	0 5 4 5	0 0 4 5	0.0				
8640	min :	Summer	8.545	0.045	0.0	0.9	0.9	0.0	ОК
10080	min	Summer	8.544	0.044	0.0	0.8	0.8	0.0	ОК
15	min ۱	Winter	9.435	0.935	0.0	12.6	12.6	2.6	ΟK
30	min ۱	Winter	9.461	0.961	0.0	12.8	12.8	2.8	ΟK
60	min	Winter	9.336	0.836	0.0	11.9	11.9	2.1	ΟK
120	min 1	Winter	9.040	0.540	0.0	9.4	9.4	0.9	ΟK
180	min M	Winter	8.865	0.365	0.0	7.6	7.6	0.4	ΟK
240	min N	Winter	8.769	0.269	0.0	6.4	6.4	0.3	ОК
360	min 1	Winter	8.677	0.177	0.0	4.9	4.9	0.1	ОК
480	min 1	Winter	8.634	0.134	0.0	4.1	4.1	0.1	ОК
600	min 1	Winter	8.612	0.112	0.0	3.6	3.6	0.0	ОК
720	min 1	Winter	8.603	0.103	0.0	3.2	3.2	0.0	ОК
960	min N	Winter	8.590	0.090	0.0	2.6	2.6	0.0	ΟK
1440	min N	Winter	8.576	0.076	0.0	2.0	2.0	0.0	ΟK
2160	min N	Winter	8.566	0.066	0.0	1.5	1.5	0.0	ОК
2880	min N	Winter	8.557	0.057	0.0	1.3	1.3	0.0	ОК
4320	min 1	Winter	8.548	0.048	0.0	1.0	1.0	0.0	ОК
5760	min 1	Winter	8.544	0.044	0.0	0.8	0.8	0.0	ОК
7200	min M	Winter	8.542	0.042	0.0	0.7	0.7	0.0	ОК
8640	min N	Winter	8.540	0.040	0.0	0.7	0.7	0.0	ОК
10080	min N	Winter	8.538	0.038	0.0	0.6	0.6	0.0	ОК
240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min I min I	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	8.677 8.634 8.612 8.603 8.590 8.576 8.556 8.557 8.548 8.544 8.544 8.542 8.540 8.538	0.177 0.134 0.112 0.103 0.090 0.076 0.066 0.057 0.048 0.044 0.042 0.040 0.038	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.9 4.1 3.6 3.2 2.6 2.0 1.5 1.3 1.0 0.8 0.7 0.7 0.7	4.9 4.1 3.6 3.2 2.6 2.0 1.5 1.3 1.0 0.8 0.7 0.7 0.6	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K

	Stor	m	Rain	Floode	d Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	e Volume	(mins)	
				(m³)	(m³)		
8640	min	Summer	1.024	0.	0 108.3	4368	
10080	min	Summer	0.923	0.	0 113.9	4968	
15	min	Winter	56.548	0.	0 11.7	15	
30	min	Winter	39.673	0.	0 16.3	24	
60	min	Winter	26.745	Ο.	0 22.0	40	
120	min	Winter	17.385	Ο.	0 28.6	68	
180	min	Winter	13.417	Ο.	0 33.1	96	
240	min	Winter	11.137	Ο.	0 36.7	124	
360	min	Winter	8.542	Ο.	0 42.2	184	
480	min	Winter	7.068	Ο.	0 46.5	244	
600	min	Winter	6.098	Ο.	0 50.2	306	
720	min	Winter	5.403	0.	0 53.4	358	
960	min	Winter	4.463	0.	0 58.8	488	
1440	min	Winter	3.406	0.	0 67.3	724	
2160	min	Winter	2.598	0.	0 77.0	1056	
2880	min	Winter	2.144	0.	0 84.7	1396	
4320	min	Winter	1.634	0.	0 96.8	2124	
5760	min	Winter	1.346	0.	0 106.4	3016	
7200	min	Winter	1.158	0.	0 114.4	3624	
8640	min	Winter	1.024	0.	0 121.4	4456	
10080	min	Winter	0.923	0.	0 127.6	4864	
		©198	32-2017	XP Sc	lutions		

Cameron & F	loss									Page 1
15 Victoria	ı Stı	reet			2103	321 - 0	Cairstor	n Road No	orth	5
Aberdeen					Road	d-side	Filter	Drain 2		Ly m
AB10 1XB										Mirro
Date 07/03/	Date 07/03/2024 Designed by JMA								Drainage	
File 210321 - SuDS Component Checked by JMA									Diamage	
CADS					Sour	rce Cor	ntrol 20	017.1.2		
Cascade	Sum	marti	of Pos]+e	for 2	10321	- Poada	ido Filt	er Dra	in 2 SPCY
	Suit	unary	OI Kes	ourts	101 2.	10321	Roaus		er bra	<u>111 2.5KCX</u>
			υ	pstrea	m		Outflo	ow To Over	flow To)
			St	ructur	es					
	21	0321 -	Roadsid	de Filt	er Dra	in 1.SR	CX (1	None)	(None)	
				Half I	Drain T	ime : 3	minutes.			
	Stor	cm	Max	Max	Ma	ax	Max	Max	Max	Status
	Ever	nt	Level	Depth	Infilt	ration	Control 3	Σ Outflow	Volume	
			(m)	(m)	(1/	/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	9.543	1.043		0.0	13.4	13.4	3.2	ОК
30	min	Summer	9.630	1.130		0.0	13.9	13.9	3.7	O K
60	min	Summer	9.621	1.121		0.0	13.9	13.9	3.7	O K
120	min	Summer	9.445	0.945		0.0	12.7	12.7	2.7	OK
240	min	Summer	9.200	0.766		0.0	11.4	11.4	1.0	OK
360	min	Summer	8.937	0.437		0.0	8.4	8.4	0.6	0 K
480	min	Summer	8.824	0.324		0.0	7.1	7.1	0.4	O K
600	min	Summer	8.754	0.254		0.0	6.2	6.2	0.2	O K
720	min	Summer	8.707	0.207		0.0	5.5	5.5	0.1	0 K
960	min	Summer	8.653	0.153		0.0	4.5	4.5	0.1	OK
2160	min	Summer	8.609	0.109		0.0	3.4 2.6	3.4	0.0	OK
2880	min	Summer	8.580	0.080		0.0	2.2	2.0	0.0	0 K
4320	min	Summer	8.569	0.069		0.0	1.7	1.7	0.0	O K
5760	min	Summer	8.560	0.060		0.0	1.4	1.4	0.0	O K
7200	min	Summer	8.553	0.053		0.0	1.1	1.1	0.0	O K
			Stam		Dain	Floodo	l Dischor	me mime-D	ool	
			Event	(1	mm/hr)	Volume	Volume	e (mins	ear s)	
						(m³)	(m³)			
		15	min Su	mmer	72.673	0.0) 13	.5	15	
		30	min Su	mmer	51.518	0.0) 18	.9	24	
		60	min Su	mmer	34.923	0.0	25	.7	40	
		120	min Su	mmer .	22.569	0.0	J 33	.2	100	
		240 240	min Su	mmer	14 220	0.0	אנ ע מו ר	1	128	
		360	min Su	mmer	10.919	0.0) 48	.2	186	
		480	min Su	mmer	8.989	0.0) 52	.9	246	
		600	min Su	mmer	7.724	0.0	56	.8	306	
		720	min Su	mmer	6.821	0.0	0 60	.2	366	
		960	min Su	mmer	5.602	0.0	ט 65 איד ר	8	486 730	
		2160	min Su	mmer	3.209	0.0) 84	.9 1	084	
		2880	min Su	mmer	2.633	0.0) 92	.9 1	420	
		4320	min Su	mmer	1.989	0.0) 105	.3 2	156	
		5760	min Su	mmer	1.628	0.0) 114	.9 2	864	
		7200	min Su	mmer	1.394	0.0) 122	.9 3	552	
				©1982	2-2017	XP Sc	lutions	5		

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	
File 210321 - SuDS Component	Checked by JMA	Dialitaye
CADS	Source Control 2017.1.2	

Cascade Summary of Results for 210321 - Roadside Filter Drain 2.SRCX

	Storm	ı	Max	Max Max		Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Control \Sigma Outflow		
			(m)	(m)	(l/s)	(l/s)	(l/s)	(m³)	
		~	0 5 5 0	0 0 5 0	0.0	1 0	1 0		
8640	min :	Summer	8.550	0.050	0.0	1.0	1.0	0.0	OK
10080	min	Summer	8.548	0.048	0.0	1.0	1.0	0.0	ОК
15	min N	Winter	9.632	1.132	0.0	14.0	14.0	3.8	ΟK
30	min N	Winter	9.705	1.205	0.0	14.4	14.4	4.2	ОК
60	min N	Winter	9.618	1.118	0.0	13.9	13.9	3.7	ΟK
120	min N	Winter	9.299	0.799	0.0	11.6	11.6	1.9	ΟK
180	min N	Winter	9.061	0.561	0.0	9.6	9.6	1.0	ОК
240	min N	Winter	8.914	0.414	0.0	8.2	8.2	0.6	ОК
360	min N	Winter	8.762	0.262	0.0	6.3	6.3	0.2	ОК
480	min N	Winter	8.692	0.192	0.0	5.2	5.2	0.1	ОК
600	min N	Winter	8.652	0.152	0.0	4.5	4.5	0.1	ОК
720	min N	Winter	8.628	0.128	0.0	4.0	4.0	0.1	ОК
960	min N	Winter	8.606	0.106	0.0	3.3	3.3	0.0	ОК
1440	min N	Winter	8.588	0.088	0.0	2.5	2.5	0.0	ΟK
2160	min N	Winter	8.574	0.074	0.0	1.9	1.9	0.0	ОК
2880	min N	Winter	8.566	0.066	0.0	1.6	1.6	0.0	ОК
4320	min N	Winter	8.555	0.055	0.0	1.2	1.2	0.0	ОК
5760	min N	Winter	8.548	0.048	0.0	1.0	1.0	0.0	ОК
7200	min N	Winter	8.545	0.045	0.0	0.9	0.9	0.0	ОК
8640	min N	Winter	8.542	0.042	0.0	0.7	0.7	0.0	ОК
10080	min N	Winter	8.541	0.041	0.0	0.7	0.7	0.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
8640	min	Summer	1.227	0.0	129.8	4448	
10080	min	Summer	1.101	0.0	135.9	5040	
15	min	Winter	72.673	0.0	15.0	16	
30	min	Winter	51.518	0.0	21.3	25	
60	min	Winter	34.923	0.0	28.8	42	
120	min	Winter	22.569	0.0	37.2	70	
180	min	Winter	17.334	0.0	42.8	98	
240	min	Winter	14.329	0.0	47.2	126	
360	min	Winter	10.919	0.0	53.9	184	
480	min	Winter	8.989	0.0	59.2	244	
600	min	Winter	7.724	0.0	63.6	302	
720	min	Winter	6.821	0.0	67.4	362	
960	min	Winter	5.602	0.0	73.8	474	
1440	min	Winter	4.241	0.0	83.8	724	
2160	min	Winter	3.209	0.0	95.1	1076	
2880	min	Winter	2.633	0.0	104.0	1396	
4320	min	Winter	1.989	0.0	117.9	2132	
5760	min	Winter	1.628	0.0	128.7	3024	
7200	min	Winter	1.394	0.0	137.7	3472	
8640	min	Winter	1.227	0.0	145.4	4480	
10080	min	Winter	1.101	0.0	152.2	5344	
		©198	32-2017	XP Sol	utions		

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	Ly m
AB10 1XB		Mirrn
Date 07/03/2024	Designed by JMA	Drainage
File 210321 - SuDS Component	Checked by JMA	brainiage
CADS	Source Control 2017.1.2	
Cascade Painfall Details fo	r 210321 - Poadeide Filter Drain	2 9004
	I 210321 - Roadside Filter Diali	Z.SRCA
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	100 Cv (Summer) 0	.750
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 1	0080
Summer Storms	Yes Climate Change %	+35
Tir	ne Area Diagram	
	<u> </u>	
Tota	al Area (ha) 0.024	
T	ime (mins) Area	
Fr	rom: To: (ha)	
	0 4 0.024	
©1982-	-2017 XP Solutions	

Cameron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Desinado
File 210321 - SuDS Component	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Cascade Model Details for 210321 - Roadside Filter Drain 2.SRCX

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient Bas	e (m	/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient Sid	e (m	/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Safet	y Fa	ctor	2.0		Slope (1:X)	15.0
		Poro	sity	0.35		Cap Volume Depth (m)	0.000
	Invert I	evel	(m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trench W	idth	(m)	1.0		Number of Pipes	1
	Trench Le	ngth	(m)	21.0			

Orifice Outflow Control

Diameter (m) 0.080 Discharge Coefficient 0.600 Invert Level (m) 8.500

Cameron & Ross									Page 1
15 Victoria Str	eet			2103	321 - 0	Cairstor	n Road No	orth	C.
Aberdeen				Road	d-side	Filter	Drain 2		L.
AB10 1XB									Micco
Date 07/03/2024	Date 07/03/2024 Designed by JMA								
File 210321 - S	uDS C	ompone	nt	Chec	cked by	/ JMA			Diamage
CADS		-		Soui	cce Cor	ntrol 20	17.1.2		
Cascade Sum	mary o	of Res	ults f	or 2	10321 ·	- Roads:	ide Filt	er Dra	in 2.SRCX
								c1 –	
		U <u>r</u> Sti	stream sucture	5		Outflo	w To Over	TLOW TO	
210)321 -	Roadsid	e Filte	r Dra	in 1.SR	CX (N	lone)	(None)	
			Half Dr	ain T	ime : 3	minutes.			
Stor	m	Max	Max	Ma	ax	Max	Max	Max	Status
Even	t	Level	Depth I	nfilt	ration	Control 2	E Outflow	Volume	
		(m)	(m)	(1/	/s)	(1/s)	(1/s)	(m³)	
15 min	Summer	9.663	1.163		0 0	14 2	14 2	4 0	ОК
30 min	Summer	9.774	1.274		0.0	14.8	14.8	4.7	0 K
60 min	Summer	9.784	1.284		0.0	14.9	14.9	4.8	O K
120 min	Summer	9.611	1.111		0.0	13.8	13.8	3.6	0 K
180 min	Summer	9.426	0.926		0.0	12.6	12.6	2.6	O K
240 min	Summer	9.270	0.770		0.0	11.4	11.4	1.8	O K
360 min	Summer	9.047	0.547		0.0	9.5	9.5	1.0	O K
480 min	Summer	8.908	0.408		0.0	8.1	8.1	0.6	OK
600 min 720 min	Summer	8.819 0 750	0.319		0.0	/.1 6 0	/.1 6 2	0.3	OK
720 IIIII 960 min	Summer	0.7J0 8 687	0.230		0.0	5 1	5.1	0.2	OK
1440 min	Summer	8.624	0.124		0.0	3.9	3.9	0.1	0 K
2160 min	Summer	8.598	0.098		0.0	2.9	2.9	0.0	O K
2880 min	Summer	8.586	0.086		0.0	2.4	2.4	0.0	O K
4320 min	Summer	8.572	0.072		0.0	1.8	1.8	0.0	O K
5760 min	Summer	8.564	0.064		0.0	1.5	1.5	0.0	O K
7200 min	Summer	8.558	0.058		0.0	1.3	1.3	0.0	OK
					_			_	
		Storm	F	ain	Flooded	l Dischar	ge Time-P	eak	
		Event	(m	m/hr)	(m ³)	(m ³)	e (mins	5)	
	15	min Sum	mer ^g	3.965	0 0) 15	. 6	16	
	30	min Sum	mer 5	9.880	0.0) 22	.0	25	
	60	min Sum	mer 4	0.721	0.0) 29	.9	40	
	120	min Sum	mer 2	6.227	0.0) 38	.6	72	
	180	min Sum	mer 2	0.088	0.0) 44	.3	100	
	240	min Sum	mer 1	6.566	0.0	48	.7	130	
	360	min Sum	mer 1	2.577	0.0) 55	.5	188	
	480	min Sum	mer 1	0.324	0.0) 60) (5	. /	246	
	600 720	min Sum	uner	0.820 7 000	0.0) 65) 65	.0	300 366	
	120 960	min Sull	mer	6.386	0.0) 75	.1	484	
	1440	min Sum	mer ·	4.811	0.0) 84	.9	712	
	2160	min Sum	mer .	3.624	0.0) 95	.9 1	076	
	2880	min Sum	mer :	2.964	0.0	104	.6 1	468	
	4320	min Sum	mer 2	2.228	0.0) 117	.9 2	124	
	5760	min Sum	mer	1.817	0.0) 128	.2 2	920	
	7200	min Sum	mer	1.550	0.0) 136	.7 3	592	
			©1982.	-2017	XP Sc	lutions			

Cameron & Ross		Page 2
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Dcaipago
File 210321 - SuDS Component	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Cascade Summary of Results for 210321 - Roadside Filter Drain 2.SRCX

	Storm		Max Max Max Max Ma		Max	Max	Status		
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
8640	min S	Summer	8.553	0.053	0.0	1.1	1.1	0.0	ΟK
10080	min S	Summer	8.549	0.049	0.0	1.0	1.0	0.0	ΟK
15	min W	Vinter	9.761	1.261	0.0	14.8	14.8	4.6	ΟK
30	min W	Vinter	9.869	1.369	0.0	15.4	15.4	5.4	ΟK
60	min W	Vinter	9.808	1.308	0.0	15.0	15.0	5.0	ΟK
120	min W	Vinter	9.483	0.983	0.0	13.0	13.0	2.9	ΟK
180	min W	Vinter	9.212	0.712	0.0	11.0	11.0	1.6	ΟK
240	min W	Vinter	9.031	0.531	0.0	9.4	9.4	0.9	ΟK
360	min W	Vinter	8.834	0.334	0.0	7.2	7.2	0.4	ΟK
480	min W	Vinter	8.740	0.240	0.0	6.0	6.0	0.2	ΟK
600	min W	Vinter	8.687	0.187	0.0	5.1	5.1	0.1	ΟK
720	min W	Vinter	8.654	0.154	0.0	4.5	4.5	0.1	ΟK
960	min W	Vinter	8.617	0.117	0.0	3.7	3.7	0.0	ΟK
1440	min W	Vinter	8.595	0.095	0.0	2.8	2.8	0.0	O K
2160	min W	Vinter	8.580	0.080	0.0	2.1	2.1	0.0	ΟK
2880	min W	Vinter	8.570	0.070	0.0	1.7	1.7	0.0	ΟK
4320	min W	Vinter	8.559	0.059	0.0	1.3	1.3	0.0	ΟK
5760	min W	Vinter	8.552	0.052	0.0	1.1	1.1	0.0	ΟK
7200	min W	Vinter	8.547	0.047	0.0	1.0	1.0	0.0	0 K
8640	min W	Vinter	8.545	0.045	0.0	0.9	0.9	0.0	O K
10080	min W	Vinter	8.543	0.043	0.0	0.8	0.8	0.0	ΟK

S	Storm	Rain	Flooded	Discharge	Time-Peak	
E	Ivent	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
8640 1	min Summer	1.361	0.0	144.1	4256	
10080 1	min Summer	1.219	0.0	150.4	5072	
15 1	min Winter	83.965	0.0	17.4	16	
30 1	min Winter	59.880	0.0	24.7	26	
60 1	min Winter	40.721	0.0	33.6	42	
120 1	min Winter	26.227	0.0	43.2	72	
180 1	min Winter	20.088	0.0	49.6	100	
240 1	min Winter	16.566	0.0	54.6	128	
360 1	min Winter	12.577	0.0	62.1	186	
480 1	min Winter	10.324	0.0	68.0	244	
600 1	min Winter	8.850	0.0	72.9	302	
720 1	min Winter	7.800	0.0	77.1	358	
960 1	min Winter	6.386	0.0	84.1	482	
1440 1	min Winter	4.811	0.0	95.1	734	
2160 1	min Winter	3.624	0.0	107.4	1036	
2880 1	min Winter	2.964	0.0	117.1	1448	
4320 1	min Winter	2.228	0.0	132.0	2140	
5760 1	min Winter	1.817	0.0	143.6	2960	
7200 1	min Winter	1.550	0.0	153.1	3616	
8640 1	min Winter	1.361	0.0	161.3	4400	
10080 1	min Winter	1.219	0.0	168.6	5120	
	©198	32-2017	XP Sol	utions		

Cameron & Ross		Page 3
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	Ly
AB10 1XB		Mirrn
Date 07/03/2024	Designed by JMA	Drainago
File 210321 - SuDS Component	Checked by JMA	Diamage
CADS	Source Control 2017.1.2	
Cascade Rainfall Details fo	or 210321 - Roadside Filter Drain	2.SRCX
Rainfall Model Return Period (years) Region Scotla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms 200 Cv (Summer) 0 and and Ireland Cv (Winter) 0 13.000 Shortest Storm (mins) 0.250 Longest Storm (mins) 1 Yes Climate Change %	Yes .750 .840 15 0080 +35
Tin	me Area Diagram	
Tot	al Area (ha) 0.024	
_		
- Fr	com: To: (ha)	
	0 4 0.024	

Comercen & Deca		Daga 1
Calleron & Ross		Page 4
15 Victoria Street	210321 - Cairston Road North	
Aberdeen	Road-side Filter Drain 2	L
AB10 1XB		Micco
Date 07/03/2024	Designed by JMA	Dcaipago
File 210321 - SuDS Component	Checked by JMA	Diamaye
CADS	Source Control 2017.1.2	

Cascade Model Details for 210321 - Roadside Filter Drain 2.SRCX

Storage is Online Cover Level (m) 10.000

Filter Drain Structure

Infiltration	Coefficient 1	Base	(m/hr)	0.00000		Pipe Diameter (m)	0.225
Infiltration	Coefficient :	Side	(m/hr)	0.00000	Pipe	Depth above Invert (m)	0.000
	Sa	fety	Factor	2.0		Slope (1:X)	15.0
		Pc	prosity	0.35		Cap Volume Depth (m)	0.000
	Inver	t Lev	vel (m)	8.500	Cap	Infiltration Depth (m)	0.000
	Trenc	h Wic	dth (m)	1.0		Number of Pipes	1
	Trench	Leng	gth (m)	21.0			

Orifice Outflow Control

Diameter (m) 0.080 Discharge Coefficient 0.600 Invert Level (m) 8.500

Cameron & Ross								Page 1
15 Victoria Street								
Aberdeen								1 m
AB10 1XB	0							— Micro
Date 07/03/2024 11:5	2		Desi	igned k	oy JMA			Drainage
File 210321 - Subs C	ompone	ent	Cheo	cked by	/	17 1 0		
CADS			Sou	rce lor	itrol 20.	11.1.2		
Cascade Summary	of Re	sults	for	210321	- Main	site At	tenuat	ion.SRCX
	U St	pstrea ructure	n es		Outflow	w To Ove	flow To	
	_							
210321 - 210321 -	· Plot 1 · Plot 2	l Pervi Pervi	ous Pa	ving.SR(ving.SR(CX (No CX	one)	(None)	
210321 -	· Plot 3	B Pervi	ous Pa	ving.SR	CX			
210321 -	Plot 4	1 Pervi	ous Pa	ving.SR	CX			
210321 -	· Plot : · Plot (5 Pervi 5 Pervi	ous Pa ous Pa	ving.SR(ving.SR(CX			
210321 -	Roadsid	de Filt	er Dra	in 2.SR	CX			
210321 -	Roadsid	de Filt	er Dra	in 1.SR	CX			
		Half D	rain T	ime : 30	5 minutes.			
Storm	Max	Max	Ma	ax	Max	Max	Max	Status
Event	Level	Depth	Infilt	ration	Control S	Outflow	Volume	
	(m)	(m)	(1,	/s)	(1/s)	(1/s)	(m³)	
15 min Summer	4.883	0.083		0.0	1.7	1.7	4.7	O K
30 min Summer	4.911	0.111		0.0	2.1	2.1	6.3	ОК
120 min Summer	4.936	0.157		0.0	2.4	2.4	/./ 8.9	OK
180 min Summer	4.964	0.164		0.0	2.8	2.8	9.4	O K
240 min Summer	4.965	0.165		0.0	2.8	2.8	9.4	O K
360 min Summer	4.959	0.159		0.0	2.7	2.7	9.0	ОК
480 min Summer	4.949	0.149		0.0	2.6	2.6	8.5	OK
720 min Summer	4.932	0.140		0.0	2.3	2.3	7.5	O K
960 min Summer	4.918	0.118		0.0	2.2	2.2	6.7	O K
1440 min Summer	4.898	0.098		0.0	2.0	2.0	5.6	O K
2160 min Summer	4.882	0.082		0.0	1.7	1.7	4.7	O K
2880 min Summer	4.874	0.074		0.0	1.4	1.4	4.2	0 K
	Storm		Rain	Flooder	1 Discharo	re Time-F	eak	
	Event	(1	nm/hr)	Volume	Volume	(min:	s)	
				(m³)	(m³)			
15	min Su	mmer 1	19.000	0.0) 6.	5	19	
30	min Su	mmer 3	13.218	0.0	9.	4	32	
60	min Su	mmer	8.918	0.0) 13.	1	54	
120	min Su	mmer	5.920	0.0	17.	7	86	
180	min Su	mmer	4.641 3 903	0.0) 20.) 23	ッ 5	⊥⊥ŏ 150	
360	min Su	mmer	3.055	0.0) 27.	8	214	
480	min Su	mmer	2.569	0.0) 31.	2	276	
600	min Su	mmer	2.246	0.0) 34.	1	338	
720	min Su	mmer	2.013	0.0	36.	8	398	
960	min Su	mmer	1.694	0.0	41.	3	520	
1440	min Su	mmer	1 034	0.0) 48.) 54	2 g 1	/54 108	
2880	min Su	mmer	0.866	0.0) 63.	3 1	472	
		©1982	2-2017	XP Sc	lutions			

Came	ron & Ro	SS								Page 2	
15 V:	ictoria	Street									
Aber	deen									4	
AB10	1 YB									~	m
ABIU		004 11 50	<u></u>		- ·	1 1				– Micro	
Date	0//03/2	024 11:52	2		Desi	gned b	у ЈМА			Drainar	
File	210321	– SuDS Co	ompone	nt	Chec	ked by				Lienieu	Je
CADS					Sour	ce Con	trol 201	7.1.2			
	Cascade	Summarv	of Re	sults	for 2	10321	- Main s	site Att	enuati	ion.SRCX	
					-						
	s	Storm	Max	Max	Ma	x	Max	Max	Max	Status	
	E	lvent	Level	Depth	Infilt	ration (Control E	Outflow	Volume		
			(m)	(m)	(1/	's)	(1/s)	(1/s)	(m³)		
	4320 1	min Summer	4.863	0.063		0.0	1.1	1.1	3.6	O K	
	5760 1	min Summer	4.857	0.057		0.0	1.0	1.0	3.2	0 K	
	7200 1	min Summer	4.852	0.052		0.0	0.8	0.8	3.0	ΟK	
	8640 1	min Summer	4.849	0.049		0.0	0.8	0.8	2.8	OK	
	1 UUUUU 1 -	min Summer	4.846	0.046		0.0	U./	0./	2.6	U K	
	30 · 1 CT	min Winter	4.093	0.093		0.0	1.9 2 3	1.9	3.3 7 1	0 K	
	50 I 60 v	min Winter	4.953	0.153		0.0	2.5	2.3 2.6	/.1 8 7	0 K	
	120 1	min Winter	4.972	0.172		0.0	2.8	2.8	9.8	O K	
	180 1	min Winter	4.974	0.174		0.0	2.9	2.9	9.9	O K	
	240 1	min Winter	4.969	0.169		0.0	2.8	2.8	9.7	ОК	
	360 1	min Winter	4.954	0.154		0.0	2.6	2.6	8.8	O K	
	480 1	min Winter	4.938	0.138		0.0	2.5	2.5	7.9	O K	
	600 1	min Winter	4.925	0.125		0.0	2.3	2.3	7.1	O K	
	720 1	min Winter	4.913	0.113		0.0	2.2	2.2	6.5	O K	
	960 1	min Winter	4.896	0.096		0.0	1.9	1.9	5.5	O K	
	1440 1	min Winter	4.879	0.079		0.0	1.6	1.6	4.5	0 K	
	2160 1	min Winter	4.868	0.068		0.0	1.3	1.3	3.8	ОК	
	2880 1	min Winter	4.860	0.060		0.0	1.1	1.1	3.4	ОК	
	4320 1	min Winter	4.852	0.052		0.0	0.8	0.8	3.0	OK	
	5760 1	MIII WINCEL	4.04/	0.04/		0.0	0.7	0.7	2.1	ΟK	
			a b b b b b b b b b b		Dein		Discharge		1-		
			Storm	,	Rain	Flooded	Discharg	e Time-P	eaĸ		
			Event	(mm/nr)	volume	volume	(mins	5)		
						(111-)	(111 -)				
		4320	min Su	mmer	0.675	0.0	73.	8 2	204		
		5760	min Su	mmer	0.566	0.0	82.	4 2	936		
		7200	min Su	mmer	0.494	0.0	89.	5 3	672		
		8640	min Su	mmer	0.441	0.0	95.	6 4	360		
		10080	min Su	mmer	0.401	0.0	101.	0 5	096		
		15	min Wi	nter	19.000	0.0	7.	4	18		
		30	min Wi	nter	13.218	0.0	10.	7	32		
		60	min Wi	nter	8.918	0.0	14.	8	58		
		120	min Wi	nter	5.920	0.0	19.	9	90		
		780 T80	min Wi	nter	4.641	0.0	23.	5	150 150		
		240	min W1	nter	3.903	0.0	∠0. ⊃1) 2	130 224		
		180 10C	min Wl	nter	2 560	0.0	31. 25	∠ 1	224 286		
		400	min Wi	nter	2.246	0.0	33.	4	348		
		720	min Wi	nter	2.013	0.0	41.	3	406		
		960	min Wi	nter	1.694	0.0	46.	4	522		
		1440	min Wi	nter	1.326	0.0	54.	5	752		
		2160	min Wi	nter	1.034	0.0	63.	8 1	124		
		2880	min Wi	nter	0.866	0.0	71.	2 1	480		
		4320	min Wi	nter	0.675	0.0	83.	0 2	196		
		5760	min Wi	nter	0.566	0.0	92.	6 2	944		
				0100	0.01-						
				©1982	2017	XP Sol	LUTIONS				

Came	ron & R	OSS									Page 3	
15 V:	ictoria	Str	reet								S	
Aber	deen										L.	
AB10	1XB										Micco	m
Date	07/03/	2024	11:52	2		Desi	gned b	y JMA			Drain	, 200
File	210321	- S	uDS Co	ompor	nent	. Chec	ked by				DIGILI	aye
CADS						Sour	ce Con	trol 201	7.1.2			
	Cascad	e Su	mmary	of F	Results	s for 2	210321	- Main s	ite Atte	enuat	ion.SRCX	
		Stor Even	m t	Max Leve (m)	Max l Depth (m)	Ma Infilt (1,	ax cration (/s)	Max Control Σ (1/s)	Max Outflow V (l/s)	Max Volume (m³)	Status	
	7200 8640 10080	min min min	Winter Winter Winter	4.84 4.83 4.83	2 0.042 9 0.039 7 0.037	2	0.0 0.0 0.0	0.6 0.5 0.5	0.6 0.5 0.5	2.4 2.2 2.1	0 K 0 K 0 K	
				Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	e Time-Pea (mins)	ak		
			7200	min N	Vinter	0.494	0.0	100.	7 36	80		
			8640	min N	Vinter	0.441	0.0	107.	7 43	44		
			10080	min N	Winter	0.401	0.0	113.	8 50	96		
					©198	2-2017	XP So	lutions				
					@r 70		··· 001					

Cameron & Ross		Page 4
15 Victoria Street		
Aberdeen		4
AB10 1XB		~~~~
Date 07/03/2024 11:52	Designed by JMA	MICIO
File 210321 - SuDS Component	Checked by	Drainage
CADS	Source Control 2017.1.2	
Cascade Rainfall Details f	or 210321 - Main site Attenuation	n.SRCX
Rainfall Model	FSR Winter Storms	Yes
Return Period (years) Region Scotla	nd and Ireland Cv (Summer) 0	. 750
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 1	080
Summer Storms	Yes Climate Change %	+0
Tin	ne Area Diagram	
Tota	al Area (ha) 0.031	
Ti Fr	ime (mins) Area om: To: (ha)	
	0 4 0.031	
©1982-	-2017 XP Solutions	

Cameron & Ross				Page 5
15 Victoria Street				
Aberdeen				4
AB10 1XB				- Con
Date 07/03/2024 11:52	Desiar	ed by JMA		Micro
File 210321 - SuDS Component	Checke	d by		Drainago
CADS	Source	Control 201	17 1 2	
	bouroe			
Cascade Model Details for	21032	1 - Main sit	e Attenu	ation.SRCX
Storage is Or	line Co	ver Level (m)	6.000	
Cellula	r Stora	age Structur	<u>e</u>	
	_		_	
Inver Infiltration Coefficient Infiltration Coefficient	t Level Base (m Side (m	(m) 4.800 S /hr) 0.00000 /hr) 0.00000	afety Fact Porosi	cor 2.0 ity 0.95
Depth (m) Area (m²) Inf. Are	a (m²)	Depth (m) Area	(m²) Inf	. Area (m²)
0.000 60.0 1.200 60.0	60.0 97.2	1.300	0.0	97.2
Orific	e Outf	low Control		
Diameter (m) 0.000 Discharge	e coeiii	cient 0.600 in	vert Level	1 (m) 4.800
	001	D. G. 1		

Cameron & Ross							Page 1					
15 Victoria Street												
Aberdeen							L.					
AB10 1XB							Micro					
Date 07/03/2024 12:0	4	Des	igned k	by JMA			Dcaipago					
File		Che	cked by	!			Diamaye					
CADS		Sou	rce Cor	ntrol 201	7.1.2							
Cascade Summary	of Resu	lts for	210321	- Main s	site At	tenuat	ion.SRCX					
				0+ 61		. 61						
	Stru	cream ctures		OUTIIOW	To Over	CITOM LC)					
210321 - Plot 1 Pervious Paving.SRCX (None) (None) 210321 - Plot 2 Pervious Paving.SRCX												
210321 - Plot 2 Pervious Paving.SRCX 210321 - Plot 3 Pervious Paving.SRCX												
210321 -	Plot 4 P	ervious Pa	ving.SR	CX								
210321 -	Plot 5 P	ervious Pa	ving.SR	CX								
210321 -	Roadside	Filter Dra	in 2.SR	CX								
210321 -	Roadside	Filter Dra	in 1.SR	CX								
	TT -	lf Drain m	ime · /	minutos								
	па	II DIAIN I	11111e : 4	minutes.								
Storm	Max M	iax M	ax	Max	Max	Max	Status					
Event	Level De	pth Infilt	ration	Control E	Outflow	Volume						
	(m) (m) (1	/s)	(1/s)	(1/s)	(m³)						
15 min Summer	4.944 0.	144	0.0	2.5	2.5	8.2	O K					
30 min Summer	4.994 0.	194	0.0	3.0	3.0	11.0	O K					
120 min Summer	5.041 0.	241 273	0.0	3.4	3.4	13.7	0 K					
180 min Summer	5.085 0.	285	0.0	3.8	3.8	16.2	0 K					
240 min Summer	5.087 0.	287	0.0	3.8	3.8	16.4	O K					
360 min Summer	5.079 0.	279	0.0	3.8	3.8	15.9	O K					
480 min Summer	5.065 0.	265	0.0	3.6	3.6	15.1	O K					
600 min Summer	5.049 0.	249	0.0	3.5	3.5	14.2	O K					
720 min Summer	5.034 0.	234	0.0	3.4	3.4	13.3	O K					
960 min Summer	5.007 0.	207	0.0	3.2	3.2	11.8	ОК					
1440 min Summer	4.967 0.	167	0.0	2.8	2.8	9.5	OK					
2160 min Summer 2880 min Summer	4.929 0.	129	0.0	2.4	2.4	7.4 6.0	0 K					
	Q b c c c c c c c c c c	De in				1-						
	Storm	Rain (mm/hr)	Volume	Volume	e Time-P (min)	eak s)						
	20010	(,	(m ³)	(m ³)	(27						
15	min Orm	22 21 21 7	0.4) 10	2	1.0						
15	min Summe	er 33.317 er 23.154	0.0) 17 3	2	19						
60	min Summe	r 15.530	0.0	23.1	5	60						
120	min Summe	er 10.149	0.0	30.9	9	92						
180	min Summe	er 7.867	0.0	36.2	1	124						
240	min Summe	er 6.555	0.0	40.2	2	158						
360	min Summe	er 5.058	0.0	46.	6	224						
480	min Summe	er 4.204	0.0) 51.	7	288						
600	min Summe	er 3.641	0.0) 56.0	0	350						
720	min Summe	er 3.236	0.0	59.8	8	412						
960	min Summe	er 2.686	0.0	66.2	2	532						
1440	min Summe	er 2.065	0.0	76.3	3	172						
2160	min Summe	er 1.587	0.0	88.0	u 1 2 1	128						
2880	mili Summe	sr 1.31/	0.0	97	L د	404						
	©	1982-2017	7 XP Sc	lutions								

Cameron & Ross							Page 2
15 Victoria Street							
Aberdeen							4
AB10 1XB							Minut
Date 07/03/2024 12:04	1	Desi	gned b	v JMA			
File		Chec	ked by	1 -			Drainage
CADS		Sour		+rol 201	7 1 2		
CADS		SOUL	ce con	101 201	/•⊥•∠		
Cascade Summary	of Posult	s for 2	10321	- Main e	ita 7++	onust	ion SPCY
	OI RESULC	5 101 2	.10321	Main 5	ILE ALL	enuat	LOIL BROX
Storm	Max Max	Ma	x	Max	Max	Max	Status
Event	Level Dept	h Infilt	ration (Control S	Outflow	Volume	
	(m) (m)	(1/	/s)	(1/s)	(1/s)	(m³)	
	4 000 0 000	2	0 0	1 7	1 7	4 7	0.77
4320 min Summer 5760 min Summer	4.883 0.08	3	0.0	1./	1 /	4./	OK
7200 min Summer	4.873 0.07	5	0.0	1 2	1 2	3 8	0 K
8640 min Summer	4 862 0 04	, 2	0.0	±•∠ 1 1	1 1	2.0 2.5	0 K
10000 min Summer	1 850 0 0E	5	0.0	⊥•⊥ 1 ∩	1 0	3.J 3.J	OK
15 min Winter	4.000 0.000	2	0.0	1.0	1.0	3.3	OV
15 min Winter	4.902 U.16	-	0.0	2.1	2.1	9.2 10 /	OK
30 min Winter	5.01/ U.21	/ 1	0.0	3.2	3.2	1 - 4	O K
60 min Winter	5.U/L 0.27	L	0.0	3./	3.1	15.4	U K
120 min Winter	5.104 0.304	4	0.0	3.9	3.9	17.3	U K
180 min Winter	5.112 0.312	2	0.0	4.0	4.0	17.8	ОК
240 min Winter	5.108 0.308	3	0.0	4.0	4.0	17.6	ОК
360 min Winter	5.085 0.28	5	0.0	3.8	3.8	16.3	0 K
480 min Winter	5.058 0.258	3	0.0	3.6	3.6	14.7	O K
600 min Winter	5.033 0.233	3	0.0	3.4	3.4	13.3	O K
720 min Winter	5.010 0.210	C	0.0	3.2	3.2	12.0	O K
960 min Winter	4.975 0.17	5	0.0	2.9	2.9	10.0	0 K
1440 min Winter	4.930 0.130	C	0.0	2.4	2.4	7.4	O K
2160 min Winter	4.894 0.094	4	0.0	1.9	1.9	5.4	O K
2880 min Winter	4.880 0.080	C	0.0	1.6	1.6	4.6	O K
4320 min Winter	4.867 0.06	7	0.0	1.2	1.2	3.8	O K
5760 min Winter	4.859 0.05	9	0.0	1.0	1.0	3.4	O K
	Storm	Rain	Flooded	Discharge	e Time-Pe	eak	
	Event	(mm/hr)	Volume	Volume (m ³)	(mins)	
			(111)	(111)			
4320	min Summer	1.011	0.0	111.8	3 22	204	
5760	min Summer	0.838	0.0	123.4	1 2	936	
7200	min Summer	0.725	0.0	133.0) 3	672	
8640	min Summer	0.643	0.0	141.4	1 43	344	
10080	min Summer	0.582	0.0	148.8	3 5	104	
15	min Winter	33.317	0.0	13.7	7	19	
30	min Winter	23.154	0.0	19.4	1	32	
60	min Winter	15.530	0.0	26.4	1	60	
120	min Winter	10.149	0.0	34.	7	96	
180	min Winter	7.867	0.0	40.5	5	132	
240	min Winter	6.555	0.0	45.2	L :	168	
360	min Winter	5.058	0.0	52.3	3 2	236	
480	min Winter	4.204	0.0	58.0) :	300	
600	min Winter	3.641	0.0	62.8	3 3	362	
720	min Winter	3.236	0.0	67.2	L ·	424	
960	min Winter	2.686	0.0	74.3	3 !	548	
1440	min Winter	2.065	0.0	85.0	5 ,	780	
2160	min Winter	1.587	0.0	98.8	3 11	132	
2880	min Winter	1.317	0.0	109.3	L 14	472	
4320	min Winter	1.011	0.0	125.5	5 22	204	
5760	min Winter	0.838	0.0	138.5	5 2	944	
	©198	82-2017	XP Sol	lutions			

Cameron & Ross							Page 3
15 Victoria Street							
Aberdeen							4
AB10 1XB							m
Date 07/03/2024 12:04	4	Desi	aned h	AMT. V			Micro
File	-	Chec	rked by	y ormi			Drainage
		Chec	cheu by	+ === 1 201'	7 1 2		
CADS		5001	.ce com	LIOI 201	1.1.2		
Cascade Summary	of Results	for 2	210321	- Main s	ite Atten	uati	on.SRCX
Storm	Max Max	M	ax	Max	Max M	lax	Status
Event	Level Depth	Infilt	ration (Control S	Outflow Vo	lume	
	(m) (m)	(1	/s)	(1/s)	(l/s) (1	m³)	
7200 min Winter	4 854 0 054		0 0	0 9	0 9	3 1	0 K
8640 min Winter	4.851 0.051		0.0	0.8	0.8	2.9	ОК
10080 min Winter	4.848 0.048		0.0	0.7	0.7	2.7	ОК
	Storm	Rain	Flooded	Discharge	e Time-Peak	:	
	Event	(mm/hr)	Volume	Volume	(mins)		
			(m³)	(m³)			
7200	min Wintor	0 725	0 0	1/0	1 3664		
8640	min Winter	0.725	0.0	149.4	± 3004 3 4376		
10080	min Winter	0.582	0.0	167.2	2 5128		
	©1982	2-2017	XP Sol	lutions			

Comoron & Dogg		Dago 1
LE Mistoria Otwast		Fage 4
15 VICTORIA STREET		2
Aberdeen		1 m
AB10 1XB		Mirm
Date 07/03/2024 12:04	Designed by JMA	Drainago
File	Checked by	Diamaye
CADS	Source Control 2017.1.2	
Cascade Rainfall Details f	or 210321 - Main site Attenuatio	n.SRCX
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	10 Cv (Summer) 0	.750
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 1	0080
Summer Storms	Yes Climate Change %	+0
<u></u> <u></u>	ne Area Diagram	
Tota	al Area (ha) 0.031	
Ti	ime (mins) Area	
Fr	om: To: (ha)	
	0 4 0.031	
 @1982-	-2017 XP Solutions	

Cameron & Ross					Page 5
15 Victoria Stree	t				
Aberdeen					4
AB10 1XB					Micco
Date 07/03/2024 12	2:04	Designe	d by JMA		MILIU
File		Checked	by		Drainage
CADS		Source	Control 2	017.1.2	
<u>Cascade Mo</u>	del Details	for 210321	- Main si	lte Attenua	ation.SRCX
	Storage is	s Online Cove	er Level (m)	6.000	
	Celli	ılar Storaç	je Structu	re	
Infiltr Infiltr	In ation Coefficie ation Coefficie	nvert Level (ent Base (m/r ent Side (m/r	m) 4.800 ar) 0.00000 ar) 0.00000	Safety Facto Porosit	or 2.0 Cy 0.95
Depth (m)	Area (m²) Inf.	Area (m²) De	epth (m) Are	ea (m²) Inf.	Area (m²)
0.000 1.200	60.0 60.0	60.0 97.2	1.300	0.0	97.2
	Ori	fice Outfl	ow Control		
	011	TICC OUCTI	ow concro	<u>-</u>	
Diameter (1	m) 0.060 Disch	arge Coeffici	ent 0.600	Invert Level	(m) 4.800
		00 0015	<u> </u>		
	©19	82-2017 XP	Solutions	5	

Cameron & Ross							Page 1		
15 Victoria Street									
Aberdeen							Ly		
AB10 1XB							Micro		
Date 07/03/2024 12:0	6	Des	igned b	by JMA			Drainago		
File	File Checked by								
CADS Source Control 2017.1.2									
			010001						
Cascade Summary	of Resu.	lts ior	210321	- Main s	site At	tenuat	lon.SRCX		
	Upst	ream		Outflow	To Over	flow To			
	Struc	tures							
210321 -	Dlot 1 Do	ruious Pa	wing SP	TY (No	201	(Nono)			
210321 -	· Plot 2 Pe	ervious Pa	ving.SR	CX (NO	110)	(NOILE)			
210321 -	• Plot 3 Pe	ervious Pa	ving.SR	CX					
210321 -	· Plot 4 Pe · Plot 5 Pe	ervious Pa Prvious Pa	ving.SR	CX					
210321 -	· Plot 6 Pe	ervious Pa	ving.SR	CX					
210321 -	Roadside H	ilter Dra	in 2.SR	CX					
210321 -	Koadside H	ulter Dra	un 1.SR	CX					
	Hal	f Drain T	ime : 59	minutes.					
Charm.	Mass Ma			Maria	Mari	Maria	Shahwa		
Event	Max Ma Level Der	x M oth Infilt	ax ration	Max Control Σ	Max Outflow	Max Volume	Status		
	(m) (m	ı) (1	/s)	(1/s)	(1/s)	(m ³)			
15 min Summer	5 043 0 2	13	0 0	35	35	13.8	O K		
30 min Summer	5.134 0.3	34	0.0	4.1	4.1	19.1	0 K		
60 min Summer	5.224 0.4	24	0.0	4.7	4.7	24.2	O K		
120 min Summer	5.283 0.4	83	0.0	5.1	5.1	27.5	O K		
180 min Summer	5.305 0.5	05	0.0	5.2	5.2	28.8	OK		
360 min Summer	5 307 0 5	07	0.0	5.2	5.2	29.2	OK		
480 min Summer	5.290 0.4	.90	0.0	5.1	5.1	28.0	O K		
600 min Summer	5.270 0.4	70	0.0	5.0	5.0	26.8	O K		
720 min Summer	5.248 0.4	48	0.0	4.9	4.9	25.6	O K		
960 min Summer	5.206 0.4	06	0.0	4.6	4.6	23.1	O K		
1440 min Summer	5.134 0.3	34	0.0	4.1	4.1	19.0	O K		
2160 min Summer	5.058 0.2	58	0.0	3.6	3.6	14.7	O K		
2880 min Summer	5.008 0.2	08	0.0	3.2	3.2	11.9	0 K		
	Storm	Rain	Flooded	l Discharge	e Time-P	eak			
	Event	(mm/hr)	Volume	Volume	(min:	5)			
			(m³)	(m³)					
15	min Summe:	r 56.548	0.0	21.	3	22			
30	min Summe	r 39.673	0.0	30.3	2	33			
60	min Summe	r 26.745	0.0	41.	1	62			
120	min Summe:	r 17.385	0.0	53.	6 2	102 122			
180	min Summe:	r 13.417 r 11 127	0.0	62.	∠ 0.	132 166			
240	min Summe:	r 8 510	0.0	, 68.) 70	9 4	100 234			
480	min Summe	r 7.068	0.0	, , , , , , , , , , , , , , , , , , ,	- 6	300			
600	min Summe	r 6.098	0.0	94.	5	364			
720	min Summe:	r 5.403	0.0	100.	5	428			
960	min Summe:	r 4.463	0.0	110.	7	550			
1440	min Summe	r 3.406	0.0	126.	7	794			
2160	min Summe:	r 2.598	0.0	145.	1 1	148			
2880	min Summe:	r 2.144	0.0	159.	5 1	504			
	∩1	982-2017	7 XP 90	lutione					
	01	JUZ-ZUI	, AE 30	TUCTOUS					

Cameı	ron & Ro	DSS								Page	2
15 V	ictoria	Street									1
Abero	deen									4	
AB10	1 YB										Um
ADIO		004 10 0			D '	1 1.	T N 6 7			- Micr	
Date	0//03/2	2024 12:0	00		Desi	gnea by	y JMA			Drain	лапе
File					Chec	ked by				Diam	illige
CADS					Sour	ce Cont	trol 201	7.1.2			
	Cascade	e Summary	of Re	sults	for 2	10321	- Main s	ite Att	enuat	ion.SRC>	ζ
		Storm	Max	Max	Ма	ax	Max	Max	Max	Status	
	:	Event	Level	Depth	Infilt	ration C	Control S	Outflow	Volume		
			(m)	(m)	(1,	′s)	(l/s)	(1/s)	(m³)		
	1220	min Cummo	. 1 0 1 0	0 1 4 0		0 0	2 6	2 6	0 5	O V	
	4320 5760	min Summo	r 4.949 r 1 017	0.149		0.0	2.0	2.0	6.5	0 K	
	7200	min Summe	r 1 917	0.117		0.0	2.2	1 9	5.5	0 K	
	9640	min Summo	× 1 005	0.097		0.0	1 7	1 7	1.0	OK	
	10000	min Summe	L 4.000	0.000		0.0	1./ 1.6	1./	4.8 л г	0 K	
	1 L N N N N	min Wint-	L 4.0/9	0.079		0.0	1.0	1.0 2 7	4.0	O K	
	20	min Winte	L D.U/Z	0.272		0.0	5./	3./	10.5	U K	
	30	min Winte	r 5.1/4	0.3/4		0.0	4.4	4.4	21.3	U K	
	60	min Winte	r 5.277	0.477		0.0	5.0	5.0	27.2	O K	
	120	min Winte	r 5.345	0.545		0.0	5.4	5.4	31.0	O K	
	180	min Winte	r 5.365	0.565		0.0	5.5	5.5	32.2	ОК	
	240	min Winte	r 5.367	0.567		0.0	5.5	5.5	32.3	ОК	
	360	min Winte	r 5.344	0.544		0.0	5.4	5.4	31.0	ΟK	
	480	min Winte	r 5.308	0.508		0.0	5.2	5.2	28.9	ΟK	
	600	min Winte	r 5.269	0.469		0.0	5.0	5.0	26.7	ОК	
	720	min Winte	r 5.232	0.432		0.0	4.8	4.8	24.6	ОК	
	960	min Winte	r 5.167	0.367		0.0	4.4	4.4	20.9	ОК	
	1440	min Winte	r 5.073	0.273		0.0	3.7	3.7	15.5	ΟK	
	2160	min Winte	r 4.991	0.191		0.0	3.0	3.0	10.9	ΟK	
	2880	min Winte	r 4.946	0.146		0.0	2.6	2.6	8.3	ΟK	
	4320	min Winte	r 4.900	0.100		0.0	2.0	2.0	5.7	ΟK	
	5760	min Winte	r 4.882	0.082		0.0	1.7	1.7	4.6	ΟK	
			Storm		Rain	Flooded	Discharge	e Time-Pe	eak		
			Event		(mm/hr)	Volume	Volume	(mins)		
						(m³)	(m³)				
		100) min C.	mmer	1 601	0 0	100 /	0 2'	21.2		
		4320) min Su	uuuuer	1 240	0.0	100	u 22	212 211		
		5/60	, min Su	uuuler	1.346	0.0	TAA'S	o 21	244		
		/200) min Su	unmer	1.158	0.0	214.0	o 31	012		
		8640	, min Su	unmer	1.024	0.0	227.4	4 4	0 / C		
		T0080	, min Su	ummer	0.923	0.0	238.	/ 50	JAA		
		1:	o min Wi	nter	20.548	0.0	24.(0	24		
		30	, min Wi	.nter	39.6/3	0.0	33.9	۳ ۱	34 C0		
		60	u min Wi	nter	26./45	0.0	46.2	L ·	6U		
		120) min Wi	nter	17.385	0.0	60.2	∠ .	112		
		180) min Wi	.nter	13.417	0.0	69.8	ъ 1 С	140		
		240) min Wi	nter	11.137	0.0	77.3	ځ ک د	L/6		
		360) min Wi	nter	8.542	0.0	89.0	U 2	248		
		480) min Wi	nter	7.068	0.0	98.2	2	316		
		600) min Wi	nter	6.098	0.0	106.0	U .	382		
		720) min Wi	nter	5.403	0.0	112.	/	446		
		960) min Wi	nter	4.463	0.0	124.2	2 !	568		
		1440) min Wi	nter	3.406	0.0	142.2	1 8	810		
		2160) min Wi	nter	2.598	0.0	162.	7 1:	168		
		2880) min Wi	nter	2.144	0.0	178.9	9 1	524		
		4320) min Wi	nter	1.634	0.0	204.2	2 22	232		
		5760) min Wi	nter	1.346	0.0	224.2	1 2	936		
				0100							
				©198	2-2017	XP Sol	utions				

Cameron & Ross							Page 3
15 Victoria Street							
Aberdeen							Ly m
AB10 1XB							Mirrn
Date 07/03/2024 12:	:06	Desi	gned by	y JMA			Drainage
File		Chec	cked by				Diamage
CADS		Sour	ce Cont	trol 201'	7.1.2		
Cascade Summar	rv of Result	s for 2	210321 ·	- Main s	ite Atter	uati	on.SRCX
	4						
Storm	Max Max	M.	ax	Max	Max N	lax	Status
Event	(m) (m)	n inriit (1	(s)	(1/s)	(1/s)	⊥ume m³)	
	(/	(-	, _,	(_/ 0/	(_/ _/)		
7200 min Wint	er 4.873 0.07	3	0.0	1.4	1.4	4.2	OK
10080 min Wint	er 4.863 0.06	3	0.0	1.1	1.1	3.9	0 K
	Storm	Rain	Flooded	Discharge	e Time-Peak	c	
	Event	(mm/hr)	Volume	Volume	(mins)	-	
			(m³)	(m³)	-		
72	00 min Winter	1.158	0.0	240 8	3 3672	2	
86	40 min Winter	1.024	0.0	255.2	2 4360)	
100	80 min Winter	0.923	0.0	267.9	9 5000)	
	©198	32-2017	XP Sol	utions			

Comercen & Deeg		Do go 1
LE Mistoria Otract		Fage 4
15 Victoria Street		L
Aberdeen		1 m
AB10 1XB		Mirm
Date 07/03/2024 12:06	Designed by JMA	Drainago
File	Checked by	Diamaye
CADS	Source Control 2017.1.2	
Cascade Rainfall Details f	or 210321 - Main site Attenuatio	n.SRCX
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	30 Cv (Summer) 0	.750
M5-60 (mm)	13 000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 1	0080
Summer Storms	Yes Climate Change %	+35
Tin	ne Area Diagram	
Tota	al Area (ha) 0.031	
Ti Ti	ime (mins) Area	
Fr	om: To: (ha)	
	0 4 0 021	
	0 4 0.031	
©1982-	-2017 XP Solutions	

Camero	on & Ross					Page 5
15 Vic	toria Street					
Aberde	een					Ya
AB10 1	XB					Micco
Date 0	7/03/2024 12:	:06	Designe	d by JMA		
File	'ile Checked by					Diamage
CADS			Source	Control 2	017.1.2	
	Cascade Mode	el Details	for 210321	- Main si	ite Attenua	tion.SRCX
		Storage i	s Online Cov	er Level (m)	6.000	
		Cell	ular Storag	ge Structu	re	
		_				0.0
	Infiltrat Infiltrat	ion Coefficie ion Coefficie	nvert Level ent Base (m/h ent Side (m/h	(m) 4.800 hr) 0.00000 hr) 0.00000	Safety Facto Porosit	or 2.0 y 0.95
	Depth (m) Ar	ea (m²) Inf.	Area (m²) Do	epth (m) Are	ea (m²) Inf.	Area (m²)
	0.000 1.200	60.0 60.0	60.0 97.2	1.300	0.0	97.2
		Ori	fico Outfl	ow Contro	1	
		011	TICC OUCTI	ow concro	<u></u>	
	Diameter (m)	0.060 Disch	arge Coeffic:	ient 0.600 :	Invert Level	(m) 4.800
		©19	82-2017 XP	Solutions	3	

Cameron & Ross							Page 1			
15 Victoria Street										
Aberdeen							L.			
AB10 1XB							Micro			
Date 07/03/2024 12:08	3	oy JMA			Dcaipago					
File	File Checked by									
CADS	CADS Source Control 2017.1.2									
Cascade Summary	of Resul	lts for	210321	- Main s	site At	tenuat	ion.SRCX			
Structures										
210321 -	Plot 1 Pe	ervious Pa	ving.SR	CX (Nc	one)	(None)				
210321 -	Plot 3 Pe	ervious Pa	ving.SR	CX						
210321 -	Plot 4 Pe	ervious Pa	ving.SR	CX						
210321 -	Plot 5 Pe	ervious Pa	ving.SR	CX						
210321 - F	Roadside E	ilter Dra	in 2.SR	CX						
210321 - F	Roadside H	'ilter Dra	in 1.SR	CX						
	11-1	f Drain m	imo · C	7 minutes						
	наі	τ υτατη Τ	TING : 0	/ minutes.						
Storm	Max Ma	x M	ax	Max	Max	Max	Status			
Event	Level Dep	th Infilt	ration	Control S	Outflow	Volume				
	(m) (m	i) (1	/s)	(1/s)	(1/s)	(m³)				
15 min Summer	5.112 0.3	12	0.0	4.0	4.0	17.8	ОК			
30 min Summer	5.234 0.4	34	0.0	4.8	4.8	24.7	O K			
120 min Summer	5.441 0.6	61 41	0.0	5.9	5.9	32.0	0 K			
180 min Summer	5.469 0.6	69	0.0	6.0	6.0	38.1	0 K			
240 min Summer	5.479 0.6	79	0.0	6.1	6.1	38.7	O K			
360 min Summer	5.474 0.6	74	0.0	6.0	6.0	38.4	O K			
480 min Summer	5.454 0.6	54	0.0	5.9	5.9	37.3	O K			
600 min Summer	5.429 0.6	29	0.0	5.8	5.8	35.9	OK			
720 min Summer	5.402 0.6	02	0.0	5.7	5.7	34.3	O K			
960 min Summer	5.349 0.5	55	0.0	5.4	5.4	31.3	OK			
2160 min Summer	5 153 0 3	:53	0.0	4.9	4.9	20.0	OK			
2880 min Summer	5.084 0.2	84	0.0	3.8	3.8	16.2	0 K			
	Storm	Pain	Floodor	1 Diccharg	o Timo-D	ook.				
	Event	(mm/hr)	Volume	Volume	e lime r (min:	ear s)				
			(m³)	(m³)	-					
15	min Summe	r 72 673	0 0) 27	7	25				
30	min Summe:	r 51.518	0.0	39.	5	36				
60	min Summe:	r 34.923	0.0	53.	9	62				
120	min Summe:	r 22.569	0.0	69.	9	108				
180 1	min Summe:	r 17.334	0.0	80.	6	138				
240	min Summe:	r 14.329	0.0	88.	9	170				
360	min Summe:	r 10.919	0.0) 101.	7	238				
480	min Summe: min Summe	r 8.989	0.0	J 111.	/	3U4 270				
600 1	min Summe:	L 1.124	0.0	ע בעט. 107	0 2	37U 131				
960	min Summo	r 5 602	0.0) 120	∠ २	560				
1440	min Summe	r 4.241	0.0) 158	2	808				
2160	min Summe	r 3.209	0.0) 179	- 5 1	164				
2880	min Summe:	r 2.633	0.0	196.	3 1	524				
	©1	982-2017	7 XP Sc	lutions						

Cameron & Ross							Page 2
15 Victoria Street							
Aberdeen							4
AB10 1XB							Minut
Date 07/03/2024 12:03	8	Desi	gned b	y JMA			
File		Chec	ked by	-			Drainage
CADS		Sour	Ce Con	trol 201	7 1 2		
		DOUL		201 201			
Cascade Summary	of Result	s for 2	10321	- Main s	ito Att	enuat	ion SRCX
	OI REBUIE	0 101 2	10021	IIIII 5	100 1100	ciidaei	Lon. Diten
Storm	Max Max	Ма	ax	Max	Max	Max	Status
Event	Level Dept	h Infilt	ration (Control S	Outflow	Volume	
	(m) (m)	(1/	's)	(l/s)	(l/s)	(m³)	
4320 min Summor	5 001 0 20	1	0 0	3 1	2 1	11 A	0 K
5760 min Summer	4.954 0.15	4	0.0	2.6	2.6	8.8	0 K
7200 min Summer	4.925 0.12	5	0.0	2.3	2.3	7.2	0 K
8640 min Summer	4.906 0.10	6	0.0	2.1	2.1	6.0	O K
10080 min Summer	4.892 0.09	2	0.0	1.9	1.9	5.2	O K
15 min Winter	5.148 0.348	3	0.0	4.2	4.2	19.8	O K
30 min Winter	5.286 0.48	6	0.0	5.1	5.1	27.7	O K
60 min Winter	5.432 0.632	2	0.0	5.8	5.8	36.0	ОК
120 min Winter	5.528 0.728	3	0.0	6.3	6.3	41.5	O K
180 min Winter	5.553 0.753	3	0.0	6.4	6.4	42.9	0 K
240 min Winter	5.559 0.75	9	0.0	6.4	6.4	43.3	O K
360 min Winter	5.535 0.73	5	0.0	6.3	6.3	41.9	O K
480 min Winter	5.492 0.692	2	0.0	6.1	6.1	39.4	O K
600 min Winter	5.444 0.64	4	0.0	5.9	5.9	36.7	O K
720 min Winter	5.398 0.598	3	0.0	5.7	5.7	34.1	O K
960 min Winter	5.313 0.513	3	0.0	5.2	5.2	29.2	0 K
1440 min Winter	5.184 0.384	4	0.0	4.5	4.5	21.9	O K
2160 min Winter	5.068 0.268	3	0.0	3.7	3.7	15.2	O K
2880 min Winter	5.001 0.203	1	0.0	3.1	3.1	11.5	O K
4320 min Winter	4.933 0.133	3	0.0	2.4	2.4	7.6	0 K
5760 min Winter	4.900 0.100	C	0.0	2.0	2.0	5.7	0 K
	Storm	Pain	Flooded	Discharge	Time-P	aak	
	Event	(mm/hr)	Volume	Volume	(mins)	
	lvenc	(1111) 111)	(m ³)	(m ³)	(1111)	,	
			•				
4320	min Summer	1.989	0.0	222.1	L 22	244	
5760	min Summer	1.628	0.0	242.2	2 29	944	
7200	min Summer	1.394	0.0	258.8	3 3	572	
8640	min Summer	1.227	0.0	273.1	4	4U8 120	
10080	min Summer	1.101	0.0	285.0	5 5. N	26	
15	min Winter	12.0/3 51 510	0.0	31.(, 1	20 20	
30	min Winter	31 000 DT.DTQ	0.0	44.4	± 1	20 62	
120	min Winter	27.923	0.0	78 3	· } ·	114	
120	min Winter	17,334	0.0	90.2	, <u>.</u>	144	
240	min Winter	14.329	0.0	99 7	, .	180	
360	min Winter	10.919	0.0	114 ()	254	
480	min Winter	8.989	0.0	125.2	2	324	
600	min Winter	7.724	0.0	134.5	5	392	
720	min Winter	6.821	0.0	142.6	5 4	456	
960	min Winter	5.602	0.0	156.2	2	580	
1440	min Winter	4.241	0.0	177.3	3 8	324	
2160	min Winter	3.209	0.0	201.3	3 11	176	
2880	min Winter	2.633	0.0	220.1	1. 1.	532	
4320	min Winter	1.989	0.0	249.1	22	244	
5760	min Winter	1.628	0.0	271.6	5 29	944	
	<u></u>	0 0017	VD C-3				
	©198	52-201/	XP SO	LUTIONS			

Cameron & Ross							Page 3
15 Victoria Street							
Aberdeen							4
AB10 1XB							m
Date 07/03/2024 12:0	8	Desi	aned by	AMT, V			MICLO
File	~	Cher	ked hu	1 01111			Drainage
		Chec	Keu by	001'	7 1 0		
CADS		Sour	ce con	trol 201	/.1.2		
Cascade Summary	of Results	for 2	210321	- Main s	ite Atten	uati	on.SRCX
Storm	Max Max	Ma	ax	Max	Max M	ax	Status
Event	Level Depth	Infilt	ration (Control Σ	Outflow Vol	Lume	
	(m) (m)	(1)	/s)	(1/S)	(1/5) (1	u-)	
7200 min Winter	4.884 0.084		0.0	1.7	1.7	4.8	O K
8640 min Winter	4.876 0.076		0.0	1.5	1.5	4.4	O K
10080 min Winter	4.871 0.071		0.0	1.4	1.4	4.0	O K
	Storm	Rain	Flooded	Discharge	e Time-Peak		
	Event	(mm/hr)	Volume	Volume	(mins)		
			(m³)	(m³)			
7200	min Winter	1 39/	0 0	290 3	3 3624		
8640	min Winter	1.227	0.0	306.4	4400		
10080	min Winter	1.101	0.0	320.4	4 5080		
				_			
	©1982	2-2017	XP Sol	lutions			

Cameron & Ross		Page 4
15 Victoria Street		
Aberdeen		4
AB10 1XB		~~~
Date 07/03/2024 12:08	Designed by JMA	MICLO
Filo	Checked by	Drainage
CADS	Source Control 2017 1 2	
	Source control 2017.1.2	
Cascade Rainfall Details f	or 210321 - Main site Attenuation	n.SRCX
Deinfell Medel		Vee
Return Period (vears)	100 Cv (Summer) 0	.750
Region Scotla	nd and Ireland Cv (Winter) 0	.840
M5-60 (mm)	13.000 Shortest Storm (mins)	15
Ratio R	0.250 Longest Storm (mins) 1	0080
Summer Storms	ies climate change %	+35
Tin	ne Area Diagram	
Tota	al Area (ha) 0.031	
Ti Fr	me (mins) Area om: To: (ha)	
	0 4 0.031	
©1982-	-2017 XP Solutions	

Cameron	& Ross					Page 5	
15 Victo	oria Street						
Aberdeen	1					4	
AB10 1XE	3					Micro	
Date 07/	03/2024 12:	08	Designe	d by JMA			
File			Checked	by		Dialnage	
CADS	ADS Source Control 2017.1.2						
<u> </u>	Cascade Mode	el Details	for 210321	- Main si	lte Attenua	tion.SRCX	
		Storage is	s Online Cove	er Level (m)	6.000		
		Cellu	ular Storag	e Structu	re		
		_				0.0	
	Infiltrat Infiltrat	Ir ion Coefficie ion Coefficie	nvert Level (ent Base (m/r ent Side (m/r	m) 4.800 r) 0.00000 r) 0.00000	Safety Facto Porosit	r 2.0 y 0.95	
	Depth (m) Ar	ea (m²) Inf.	Area (m²) De	epth (m) Are	ea (m²) Inf.	Area (m ²)	
	0.000 1.200	60.0 60.0	60.0 97.2	1.300	0.0	97.2	
		Ori	fico Outfl	ow Control	1		
		011	TICE OUUTI	JW CONCLOS	<u>_</u>		
	Diameter (m)	0.060 Discha	arge Coeffici	ent 0.600 1	Invert Level	(m) 4.800	
		©19	82-2017 XP	Solutions	3		

Cameron & Ross							Page 1	
15 Victoria Street								
Aberdeen							L.	
AB10 1XB							Micro	
Date 07/03/2024 12:1	0	Des	igned k	by JMA			Dcaipago	
File		Che	cked by	!			Diamaye	
CADS Source Control 2017.1.2								
Cascade Summary	of Resu	lts for	210321	- Main s	site At	tenuat	ion.SRCX	
				0+ 61		. 61		
	Struc	ream tures		OUTIIOW	TO OVE	CITOM LC)	
210321 -	Plot 1 Pe	ervious Pa	ving.SR	CX (No	ne)	(None)		
210321 -	Plot 3 Pe	ervious Pa ervious Pa	ving.SR	CX				
210321 -	Plot 4 Pe	ervious Pa	ving.SR	CX				
210321 -	Plot 5 Pe	ervious Pa	ving.SR	CX				
210321 -	Roadside H	filter Dra	in 2.SR	CX				
210321 - 1	Roadside H	Filter Dra	in 1.SR	CX				
	11-7	f Drain m	imo • 7	1 minutes				
	Hdl	I Drain T	Ime:/4	a minutes.				
Storm	Max Ma	ax M	ax	Max	Max	Max	Status	
Event	Level Der	th Infilt	ration	Control E	Outflow	Volume		
	(m) (n	n) (1	/s)	(1/s)	(1/s)	(m³)		
15 min Summer	5.160 0.3	360	0.0	4.3	4.3	20.5	O K	
30 min Summer	5.304 0.5	504	0.0	5.2	5.2	28.7	O K	
120 min Summer	5.460 0.6	57	0.0	6.U	6.U 6.4	37.6 43.1	0 K	
180 min Summer	5.588 0.7	88	0.0	6.5	6.5	44.9	0 K	
240 min Summer	5.600 0.8	300	0.0	6.6	6.6	45.6	O K	
360 min Summer	5.595 0.7	95	0.0	6.6	6.6	45.3	O K	
480 min Summer	5.573 0.7	73	0.0	6.5	6.5	44.1	ОК	
600 min Summer	5.544 0.7	44	0.0	6.4	6.4	42.4	OK	
720 min Summer	5.514 0.1	14	0.0	6.2	6.Z	40.7	OK	
1440 min Summer	5 3452 0.0	577 577	0.0	5.9	5.9	31.0	OK	
2160 min Summer	5.224 0.4	124	0.0	4.7	4.7	24.2	O K	
2880 min Summer	5.142 0.3	342	0.0	4.2	4.2	19.5	O K	
	Storm	Rain	Flooder	Discharge	e Time-P	eak		
	Event	(mm/hr)	Volume	Volume	(mins	s)		
			(m³)	(m³)				
15	min Summe	r 83.965	0.0) 32	1	27		
30	min Summe	r 59.880	0.0	46.	0	38		
60	min Summe	r 40.721	0.0	63.	0	62		
120	min Summe	r 26.227	0.0) 81.	3	112		
180	min Summe	r 20.088	0.0	93.	5	142		
240	min Summe	r 16.566	0.0	102.	9	174		
360	min Summe	r 12.577	0.0	117.	3	240		
480	min Summe	r 10.324	0.0) 128.) 107 '	4 7	3U8 371		
720	min Summo	r 7 200	0.0) 172	, 6	438		
120	min Summe	r 6386	0.0) 158	9	568		
1440	min Summe	r 4.811	0.0) 179	- 6	810		
2160	min Summe	r 3.624	0.0	202.	9 1	168		
2880	min Summe	r 2.964	0.0	221.3	2 1	528		
		0.00 0.01						
	©1	982-2017	/ XP Sc	utions				

Cameı	ron & Ro	oss									Page	2
15 Vi	ictoria	Str	reet									
Abero	deen										4	
AB10	1 XB											m
Data	07/02/1	2024	10.1	<u>`</u>		Deei	anad by	- TM7			- MICC	
Date	07/03/2	2024	12:10	5		Desi	gned b	Y JMA			Drain	лапе
File						Chec	ked by				Diam	iage
CADS						Sour	ce Con	trol 201	7.1.2			
	Cascade	e Su	mmary	of Re	sults	for 2	210321	- Main s	site Att	enuat	ion.SRC>	ζ
		Stor	m	Max	Max	Ма	ах	Max	Max	Max	Status	
		Even	t	Level	Depth	Infilt	ration (Control S	Outflow	Volume		
				(m)	(m)	(1,	/s)	(1/s)	(l/s)	(m³)		
	4000		~					0.4	~ ^	10 5		
	4320	min	Summer	5.039	0.239		0.0	3.4	3.4	13./	ОК	
	5760	min	Summer	4.982	0.182		0.0	2.9	2.9	10.4	OK	
	1200	mi⊐	Summer	4.94/	0 1 2 2		0.0	2.0	2.0	0.4	O K	
	0040 10090	min	Summor	4.922 1 QNE	0.122		0.0	2.J 2 1	2.3	6.0	0 K	
	15	min	Winter	5 202	0 402		0.0	4 6	2.1 4 6	22 Q	0 K 0 L	
	±0 1	min	Winter	5.364	0.564		0.0	5.5	55	32 1	0 K	
	60	min	Winter	5.544	0.744		0.0	6.3	6.3	42.4	0 K	
	120	min	Winter	5.660	0.860		0.0	6.8	6.8	49.0	0 K	
	180	min	Winter	5.689	0.889		0.0	7.0	7.0	50.7	ΟK	
	240	min	Winter	5.698	0.898		0.0	7.0	7.0	51.2	ОК	
	360	min	Winter	5.674	0.874		0.0	6.9	6.9	49.8	ОК	
	480	min	Winter	5.627	0.827		0.0	6.7	6.7	47.1	ΟK	
	600	min	Winter	5.573	0.773		0.0	6.5	6.5	44.0	ОК	
	720	min	Winter	5.519	0.719		0.0	6.2	6.2	41.0	O K	
	960	min	Winter	5.421	0.621		0.0	5.8	5.8	35.4	ΟK	
	1440	min	Winter	5.268	0.468		0.0	5.0	5.0	26.7	ΟK	
	2160	min	Winter	5.126	0.326		0.0	4.1	4.1	18.6	ОК	
	2880	min	Winter	5.044	0.244		0.0	3.5	3.5	13.9	ОК	
	4320	min	Winter	4.958	0.158		0.0	2.7	2.7	9.0	ОК	
	5760	mın	Winter	4.91/	0.11/		0.0	2.2	2.2	6./	ΟK	
				0 to		Dain		Dischaum	- M ime D	 -		
				Storm		Rain	Molumo	Volumo	e Time-P	eak 		
				Event		(1111)	(m ³)	(m ³)	(mins	5)		
							()	(111)				
			4320	min Su	mmer	2.228	0.0	249.	0 2	248		
			5760	min Su	mmer	1.817	0.0	270.	6 2	944		
			7200	min Su	mmer	1.550	0.0	288.	2 3	672		
			8640	min Su	mmer	1.361	0.0	303.	5 4	408		
			10080	min Su	mmer	1.219	0.0	316.	6 5	136		
			15	min Wi	nter	83.965	0.0	36.	0	28		
			30	min Wi	nter	59.880	0.0	51.	7	40		
			60	min Wi	nter	40.721	0.0	70.	7	62		
			120	min Wi	nter	26.227	0.0	91.	2	110		
			T80	min Wi	nter	20.088	0.0	104.	9 1	148 101		
			240	min Wi	nter	10.000	0.0	115. 101	4 5	104 256		
			700 200	min W1	nter	10 321	0.0	⊥3⊥. 1 л л	0	∠JU 328		
			400	min Wi	nter	8 850	0.0	154 154	3	396		
			720	min Wi	nter	7.800	0.0	163 163	2	462		
			960	min Wi	nter	6.386	0.0	178.	2	588		
			1440	min Wi	nter	4.811	0.0	201.	3	834		
			2160	min Wi	nter	3.624	0.0	227.	5 1	192		
			2880	min Wi	nter	2.964	0.0	247.	9 1	532		
			4320	min Wi	nter	2.228	0.0	279.	2 2	248		
			5760	min Wi	nter	1.817	0.0	303.	4 2	944		
					©1982	2-2017	XP Sol	Lutions				

Cameron & Ross						Page 3
15 Victoria Street						
Aberdeen						L.
AB10 1XB						Micco
Date 07/03/2024 12:1	0	Desi	gned by	y JMA		Dcaipago
File		Chec	ked by			Diamaye
CADS		Sour	ce Cont	trol 2017	7.1.2	
Cascade Summary	of Results	for 2	210321	- Main s	ite Attenua	tion.SRCX
Starm.	Mara Mara	M		Maria	Mara Mara	Ototuo
Event	Max Max Level Depth	Infilt	ration C	Max Control Σ	Max Max Outflow Volum	ne
	(m) (m)	(1,	/s)	(l/s)	(1/s) (m ³)	
7200 min Mintor	4 9 9 4 9 9 9 4		0 0	1 0	10 5	4 0 K
8640 min Winter	4.894 0.094		0.0	1.9	1.9 5	.4 0 K .7 0 K
10080 min Winter	4.876 0.076		0.0	1.5	1.5 4	.3 ОК
	Storm	Rain	Flooded	Diecharco	Time-Dook	
	Event (mm/hr)	Volume	Volume	(mins)	
	•		(m³)	(m³)	、 - ,	
7200	min Mintor	1 550	0 0	303 3	3672	
8640	min Winter	1.361	0.0	340.3	3 4408	
10080	min Winter	1.219	0.0	355.2	2 5056	
	©1982	2-2017	XP Sol	utions		
	©1982	2-2017	XP Sol	utions		

Cascade Rainfall Details for 210321 - Main site Attenuation.SRCX

Checked by

Source Control 2017.1.2

Cameron & Ross

Aberdeen AB10 1XB

File

CADS

15 Victoria Street

Date 07/03/2024 12:10

	Rainfall Model		FSR	Winter Storms	Yes
Return	Period (years)		200	Cv (Summer)	0.750
	Region	Scotland and	Ireland	Cv (Winter)	0.840
	M5-60 (mm)		13.000	Shortest Storm (mins)	15
	Ratio R		0.250	Longest Storm (mins)	10080
	Summer Storms		Yes	Climate Change %	+35

Time Area Diagram

Total Area (ha) 0.031

Time (mins) Area From: To: (ha)

0 4 0.031

Comercen (Decc				Do go E
La Vietoria Street				Page 5
15 Victoria Street				2
Aberdeen				1 mm
ABIU IXB	- ·	Micro		
Date 07/03/2024 12:10	Design	ned by JMA		Drainage
File	Checke	ed by		brainage
CADS	Source	e Control 201	17.1.2	
Cascade Model Details for	r 21032	1 - Main sit	e Attenu	ation.SRCX
Storage is On	nline Co	over Level (m)	6.000	
Cellula	r Stor	age Structur	e	
Inver Infiltration Coefficient Infiltration Coefficient	rt Level Base (m Side (m	(m) 4.800 S /hr) 0.00000 /hr) 0.00000	afety Fact Porosi	or 2.0 ty 0.95
Depth (m) Area (m²) Inf. Are	ea (m²)	Depth (m) Area	u (m²) Inf.	. Area (m²)
0.000 60.0 1.200 60.0	60.0 97.2	1.300	0.0	97.2
Orific	ce Outf	low Control		
Diameter (m) 0.000 Discharge	e coerri	crent 0.000 in	Ivert rever	_ (III) 4.000
	0015			
©1982-	-2017 X	P Solutions		

351

C+R

352

APPENDIX H

SuDS Operation and Maintenace Guidance

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
	Stabilise and mow contributing and adjacent areas	As required
Occasional maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paying	As required
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
	Initial inspection	Monthly for three months after installation
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 h after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

Many of the specific maintenance activities for pervious pavements can be undertaken as part of a general site cleaning contract (many car parks or roads are swept to remove litter and for visual reasons to keep them tidy) and therefore, if litter management is already required at site, this should have marginal cost implications.

Generally, pervious pavements require less frequent gritting in winter to prevent ice formation. There is also less risk of ice formation after snow melt, as the melt water drains directly into the underlying subbase and does not have chance to refreeze. A slight frost may occur more frequently on the surface of pervious pavements compared to adjacent impermeable surfaces, but this is only likely to last for a few hours. It does not happen in all installations and, if necessary, this can be dealt with by application of salt. It is not likely to pose a hazard to vehicle movements.
354

•	Maintenance schedule	Required action	Typical frequency
	Regular maintenance	Remove litter (including leaf litter) and debris from filter drain surface, access chambers and pre-treatment devices	Monthly (or as required
		Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly
		Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly
		Remove sediment from pre-treatment devices	Six monthly, or as required
		Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (eg NJUG, 2007 or BS 3998:2010)	As required
		At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required
		Clear perforated pipework of blockages	As required

Sediments excavated from upstream pre-treatment devices that receive runoff from residential or standard road and roof areas are generally not toxic or hazardous material and can therefore be safely disposed of by either land application or landfilling. However, consultation should take place with the environmental regulator to confirm appropriate waste management protocols and compliance with legislation. Sediment testing may be required before sediment excavation to determine its classification and appropriate disposal methods. For industrial site runoff, sediment testing will be essential. In the majority of cases, it will be acceptable to distribute the sediment on site, if there is an appropriate safe and acceptable location to do so. Any damage due to sediment removal or erosion should be repaired and immediately reseeded or planted.

355

Maintenance schedule	Required action	Typical frequency
Regular maintenance Remedial actions Monitoring	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annually
	Remove sediment from pre-treatment structures and/ or internal forebays	Annually, or as required
	Repair/rehabilitate inlets, outlet, overflows and vents	As required
	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as require

Page left blank intentionally.

AberdeenInverness01224 64240001463 570100Forbes HouseMulberry House15 Victoria Street39-41 Harbour RoadAberdeen, AB10 1XBInverness, IV1 1UA

Civil+Structural Engineering Expertise

www.cameronross.co.uk info@cameronross.co.uk

Registered in Scotland SC142061 The Capitol, 431 Union Street, Aberdeen, AB11 6DA

Planning Authority Name	Orkney Islands Council	
Date of Consultation	16th January 2024	
Response required by	6th February 2024	
Planning Authority Reference	22/382/PP	
Nature of Proposal	Erect 10 houses with air source heat pumps,	
(Description)	construct a road and associated landscaping and	
	infrastructure	
Site	Cairston Road (Land Near),	
	Stromness,	
	Orkney,	
	KW16 3JS	
Otto Destanda		
	N/A	
Sile Gazelleer UPRN	22004.0	
Proposal Location Northing	326010	
Area of application site	1010010	
(Metres)	4302	
Clarification of Specific		
Reasons for Consultation		
Development Hierarchy Level	N/A	
Supporting Documentation	http://planningandwarrant.orkney.gov.uk/online-	
URL	applications/	
	Please enter - 22/382/PP	
List of Available Supporting	As above URL	
Documentation		
Offline Documents available?	N/A	
Date of Validation by Planning	23rd November 2022	
Authority		
Governing Legislation	TOWN AND COUNTRY PLANNING (SCOTLAND) ACTS	
	(SCOTLAND) REGULATIONS 2013	
Consultation Type	Planning Permission	
Consultation Stage	N/A	
Is this a re-consultation of an	YES	
existing application?		
EIA Required	No	
EIA Regulations	N/A	
Use Class (Current)		
Use Class (Proposed)		
Does the application conform		
with the Structure Plan / Local		
Plan Land Use		
Additional Comments relating		
	N/A	
to Structure Plan / Local Plan	N/A	
to Structure Plan / Local Plan Use	N/A	
to Structure Plan / Local Plan Use Transport Assessment or	N/A N/A	
to Structure Plan / Local Plan Use Transport Assessment or Travel Plan	N/A N/A	
to Structure Plan / Local Plan Use Transport Assessment or Travel Plan Applicant Name	N/A N/A Orkney Builders Ltd	
to Structure Plan / Local Plan Use Transport Assessment or Travel Plan Applicant Name Applicant Organisation Name	N/A N/A Orkney Builders Ltd	
to Structure Plan / Local Plan Use Transport Assessment or Travel Plan Applicant Name Applicant Organisation Name Applicant Address	N/A N/A Orkney Builders Ltd Orkney Builders Ltd Hatston Road	
to Structure Plan / Local Plan Use Transport Assessment or Travel Plan Applicant Name Applicant Organisation Name Applicant Address	N/A N/A Orkney Builders Ltd Orkney Builders Ltd Hatston Road Crowness	

	Kirkwall Orkney KW15 1RG
Agent Name	Bracewell Stirling
Agent Organisation Name	
Agent Address	C/o Lisa Balnave 5 Ness Bank Inverness United Kingdom IV2 4SF
Agent Phone Number	N/A
Agent Email Address	N/A
PA Office	Development Management
Case Officer	Mr Jamie Macvie
Case Officer Phone number	01856 873535 EXT 2529
Case Officer email address	jamie.macvie@orkney.gov.uk
PA Response To	planningconsultation@orkney.gov.uk

Flood Risk

Satisfactory responses have been provided to all of the queries raised regarding the surface water system proposed for this development.

We do not object to the proposal.

PW

GRANT PLANNING PERMISSION

DELEGATED DECISION

TOWN AND COUNTRY PLANNING (SCOTLAND) ACT, 1997 (as amended) ("The Act")

Ref: 22/382/PP

Orkney Builders Ltd c/o Bracewell Stirling C/o Lisa Balnave 5 Ness Bank Inverness United Kingdom IV2 4SF

With reference to your application registered on 23rd November 2022 for planning permission for the following development:-

PROPOSAL: Erect 10 houses with air source heat pumps, construct a road and associated landscaping and infrastructure

LOCATION: Cairston Road (Land Near), Stromness, Orkney, KW16 3JS

Orkney Islands Council in exercise of its powers under the above Act, hereby **Grants Planning Permission subject to the attached terms and conditions.**

The Council's reasoning for this decision is: The development is acceptable in principle, as development of an allocated site within the settlement boundary of Stromness. Management of surface water has been adequately addressed. Roads Services has no objections. Representations have been received. The development is considered to accord with Policies 1, 2, 5A, 9G and 14C of the Orkney Local Development Plan 2017, and the relevant provisions of National Planning Framework 4.

(For further detail you may view the Planning Handling Report for this case by following the Application Search and Submission link on the Council's web page and entering the reference number for this application).

Please read carefully the Terms and Conditions on the following pages as failure to comply may result in enforcement action.

Decision date: 28th June 2024

Jamie Macvie MRTPI, Service Manager, Development Management, Orkney Islands Council, Council Offices, Kirkwall, Orkney, KW15 1NY

TERMS AND CONDITIONS

TERMS

- A. The development hereby approved must be carried out in accordance with the terms and conditions attached to this planning permission and with the approved plans and details identified in Schedule 1.
- B. Failure to implement the permission in accordance with the approved details and attached planning conditions may render the development unauthorised and may result in enforcement action.
- C. No development shall commence on the development hereby approved until the developer has formally advised the Planning Authority in writing of the intended start date. This should be done as soon as practicable. Take note that **failure to submit such a Notice would be a breach of planning control** under section 123(1) of the Act and could result in enforcement action.
- D. To accord with the provisions of Section 27B of the Act, once the development hereby approved is completed, and prior to the development being brought into use, the developer shall submit a completion notice to the Planning Authority.

(To comply with C & D above please use and submit the attached forms to ensure compliance with all of the statutory requirements in this regard. These forms are also available from the planning page on the Council's web site.)

- E. If, at any stage, it becomes necessary to vary any of the approved plans or details you should contact the Planning Authority in advance of implementing any changes to establish whether the proposed changes require any further planning approval.
- F. It should be understood that this permission does not carry with it or supersede the need for any necessary consent or approval for the proposed development under any other statutory enactments, for example the Building (Scotland) Act, the Roads (Scotland) Act 1984, the Water (Scotland) Act 1980, and the Environmental Protection Act 1990.
- G. It is the responsibility of the developer to ensure that services including telephone and electricity lines, water mains and sewers are protected. You should contact the relevant service providers to check whether such services would be affected.

CONDITIONS

01. The development hereby approved to which this planning permission relates must be begun not later that the expiration of three years, beginning with the date on which the permission is granted, which is the date of this decision notice. If development has not commenced within this period, this planning permission shall lapse.

Reason: In accordance with Section 58 of the Town and Country Planning (Scotland) Act 1997, as amended, which limits the duration of planning permission.

02. No development, including any site clearance works, shall commence until a Construction Method Statement has been submitted to, and approved in writing by, the Planning Authority. The statement shall provide for:

- The means of access to and from the site for plant, machinery and all construction traffic.
- Parking of vehicles of site operatives and visitors.
- Loading and unloading of plant and materials.
- Construction compound.
- Welfare facilities.
- Storage of plant and materials used in constructing the development.
- Stockpiling of soils.
- The erection and maintenance of security hoarding.
- Construction lighting.
- Measures to control the emission of dust and dirt during construction.
- A scheme for recycling/disposing of waste resulting from demolition and construction works.
- Where relevant in terms of occupation, the phasing of the development.

For the avoidance of doubt there shall be no burning or burying of waste within the site.

Thereafter, and throughout all construction phases, the site and development shall be undertaken wholly in accordance with the approved Construction Method Statement.

Reason: To safeguard the amenity of neighbouring properties and occupants.

03. Notwithstanding the details included within the site plan hereby approved, no development shall commence until a Scheme of Landscaping for all hard and soft landscaping is submitted to, and approved in writing by, the Planning Authority, including substantial tree planting surrounding the amenity space to the south of the site. The Scheme of Landscaping shall include:

- The location of all proposed tree, shrub, hedging and grass planting.
- A planting schedule comprising layout, number, density, species, height of all trees and shrubs and seed mix of all grass areas.
- The location, design (including height where applicable) and materials of all

hard landscaping works, including walls, retaining walls, fences and gates.

 A timescale for implementation and completion of all soft and hard landscaping contained in the Scheme of Landscaping, including all tree and shrub planting in the first planting season following commencement of development. All roads, footpaths, parking, bin storage and all other hard landscaping shall be completed wholly in accordance with approved details prior to first occupation of any residential unit within the development.

All soft and hard landscaping shall be carried out wholly in accordance with the approved Scheme of Landscaping, unless otherwise agreed, in writing, with the Planning Authority.

Any tree or shrub planting which, within a period of five years from planting, in the opinion of the Planning Authority, is dead, dying, diseased or severely damaged, shall be replaced by a tree or shrub of similar size and species to that originally planted, unless otherwise agreed, in writing, with the Planning Authority.

Thereafter, the development shall be maintained in accordance with the details included in the Scheme of Landscaping throughout the lifetime of the development.

Reason: To protect the character and appearance of the area and residential amenity.

04. In conjunction with landscaping details submitted in pursuance of condition 03, no development shall commence until full details of not less than four electric vehicle chargers within the application site, and infrastructure for future installation of further chargers at each parking bay, are submitted to and agreed, in writing, by the Planning Authority. Thereafter, the electric vehicle chargers and infrastructure shall be provided in accordance with the approved details prior to first occupation of any part of the development.

Reason: To ensure adequate provision of electric vehicle charging infrastructure.

05. The development shall not be brought into use until the junction of the access hereby approved with the public road has been constructed to the Council's Roads Services standard 'Carriageway Construction', attached to and forming part of this decision notice, and in accordance with the dimensions included in the site plan hereby approved.

Any damage caused to the existing road infrastructure during construction of the development shall be repaired prior to first occupation of the development, to the satisfaction of the Planning Authority, in conjunction with Roads Services.

Reason: In the interests of road safety.

06. No house within the development hereby approved shall be occupied until the full extent of approved road and footpath surface has been completed to full construction including the final wearing surface, unless an alternative phased approach to occupation is approved under the terms of condition 02.

Reason: To ensure that an adequate level of access is timeously provided for the development; in the interests of road safety and amenity.

- The extent of the footway from the south corner of the site adjoining the thirdparty access, to the east corner of the site adjacent to Karlea, comprising the whole frontage of the application site with Cairston Road, other than the approved access.
- Full construction details of the footway, which shall be not less than 1.8 metres wide, to a standard Roads Services footway construction.
- Location and full construction details of pedestrian crossing points.
- Associated street lighting, including any alterations to existing street lighting columns.
- Any drainage included within the footway construction.
- Construction (including replacement of the existing wall where relevant) of a dry stone wall along the length of the back edge of the footway.

Thereafter, the development shall be completed wholly in accordance with approved details prior to first occupation of any house, unless otherwise approved, in writing, under the provisions of condition 06.

Reason: In the interests of road safety, and as the development of an allocated housing site within the settlement boundary.

08. No development shall commence until full details of the 'Potential Future Connection' at the north-west boundary of the application site have been submitted to and approved, in writing, by the Planning Authority. Notwithstanding details included in the site plan, the submitted details shall include construction of the road and footway to the property boundary, including service ducting and future foul and surface water drainage connections where relevant, so that development of the adjoining land can include continuation of the road and footway with no further works required within the current application site area. No construction detail shall inhibit future free access from the application site to the adjoining land. Thereafter, the 'Potential Future Connection' shall be constructed wholly in accordance with approved details prior to first occupation of any house, unless otherwise approved, in writing, under the provisions of condition 06.

Reason: To ensure access to other allocated land, to ensure connectivity within the settlement.

09. Prior to occupation of any part of the development hereby approved, all surface water drainage works hereby approved, shall be constructed wholly in accordance with the approved drawings and submitted documents, including the 'Drainage Report' dated March 2024. Thereafter, and throughout the lifetime of the development, the drainage shall be maintained in accordance with the approved details, and in accordance with the principles of Sustainable Drainage Systems (SuDS) and be compliant with the guidance set out in the CIRIA SuDS Manual C753.

Reason: To ensure the provision of an adequate surface water drainage system and to accord with Policy 13B - Sustainable Drainage Systems (SuDS) of Orkney Local Development Plan 2017.

10. No development shall commence until a Maintenance and Management Schedule is submitted to, and approved in writing by, the Planning Authority. This Schedule shall include:

- Confirmation of maintenance responsibilities and arrangements for all surface water devices, roads, footways and landscaping.
- Full maintenance details, including a maintenance schedule, of all roads and footways.
- Full maintenance details, including a maintenance schedule, of all surface water devices, including permeable paving.
- A maintenance schedule for all surface water devices.

The approved Maintenance and Management Schedule shall be applied and complied with throughout the lifetime of the development.

Reason: To ensure the proper maintenance and management of surface water devices, roads and footways and landscaping in perpetuity.

11. No development shall commence until details of affordable housing provision have been submitted to, and agreed in writing by, the Planning Authority, in conjunction with Housing Services. These details shall include consideration and incorporation of housing types and tenures which meet local housing requirements and phasing of the development, and/or a viability assessment. Thereafter, the development shall be delivered wholly in accordance with all agreed details.

Reason: To ensure the development meets local housing requirements in accordance with Policy 5B of the Orkney Local Development Plan 2017.

12. Total noise from each of the Air Source Heat Pumps installed shall not exceed NR25 within any residential property outwith the development, where NR25 is the Noise Rating Curve at 25, (noise measurements to be made with a window of any residential property outwith the development open no more than 50 mm).

Reason: To protect any nearby residents from excessive noise disturbance from the air source heat pumps.

13. Prior to the dwellings hereby approved being occupied and brought into first use, they shall be connected to Scottish Water's public waste water system.

Reason: In the interests of environmental protection and to accord with Policy 13C - Waste Water Drainage of Orkney Local Development Plan 2017.

14. Notwithstanding details included in the elevations hereby approved, all fascias, soffits, windows, and weatherboard cladding shall be dark/anthracite grey.

Reason: To ensure continuity of design through the development, to match the colours specified in the two houses at the entrance to the development, as indicated in the submitted visualisation.

15. Hours of construction work on site involving the use of machinery and powered tools, or any other operation, for example hammering, that would generate noise audible beyond the boundary of the site, shall only take place between the hours of 07:30 and 19:00 Mondays to Fridays, 09:00 to 17:00 Saturdays, and not at

Reason: To safeguard the amenity of nearby residents.

Informatives

- 01. This application was subject to consultations with agencies and other interested parties. It would be helpful for you to look at the full terms of their response(s) as they include advice and contact details that are relevant to you. You can access these details by following the Online Planning link on the Council's website and then entering either the application address or the planning application number.
- 02. It is an offence under Section 56 of the Roads (Scotland) Act 1984 to carry out any excavations within the boundary of the public road without written permission of the roads authority. Therefore, one or more separate consents will be required from the Council's Roads Services to carry out any works within the road boundary, prior to any works commencing. These consents may require additional work and/or introduce additional specifications. You are therefore advised to contact Roads Services for further advice as early as possible.

Any damage caused to the existing road infrastructure during construction of the development shall be repaired prior to the development being brought into use, to the satisfaction of the Planning Authority, in conjunction with Roads Services.

It is an offence under Section 95 of the Roads (Scotland) Act 1984 to allow mud or any other material to be deposited, and thereafter remain beyond the working day, on a public road from any vehicle or development site.

SCHEDULE 1 – PLANS, VARIATIONS AND ANY OBLIGATION

1. Plans and Drawings

The plans and drawings to which this decision relates are those identified below:

Location Plan	OIC-01	1
Floor & Elevation Plans	OIC-04	1
Floor & Elevation Plans	OIC-07	1
Floor & Elevation Plans	OIC-08	1
Drainage Layout	OIC-10	4
Floor & Elevation Plans	OIC-06	2
Site Plan	OIC-03	3
Floor & Elevation Plans	OIC-05	2
Other	OIC-15	2
Other	OIC-13	3
Other	OIC-16	2
Other	OIC-11	3

2. Variations

If there have been any variations made to the application in accordance with section 32A of the Act these are specified below:

Date of Amendment: Reasons

3. Legal Obligation

Has any obligation been entered into under section 75 of the Act? - N

If such an obligation has been entered into, the terms of such obligation or a summary of such terms may be inspected by contacting Legal Services.

RIGHT TO SEEK A REVIEW

If you are unhappy with the terms of this decision you have a right to ask for a review of your planning decision by following the procedure specified below.

PROCEDURE FOR REQUESTING A REVIEW BY THE LOCAL REVIEW BODY

- 1. If the applicant is aggrieved by the decision of the Appointed Officer to:
 - a. Refuse any application, or
 - b. Grant permission subject to conditions.

In accordance with the Town and Country Planning (Scheme of Delegation and Local Review Procedure) (Scotland) Regulations, the applicant may apply to the Local Review Body within three months from the date of this notice for a review of that decision.

2. Forms to request a review are available from either address below, or from <u>http://www.orkney.gov.uk/Service-Directory/D/appeal-a-decision.htm</u>.

Completed forms to request a review should be submitted to the address below:

Committee Services Orkney Islands Council Council Offices School Place KIRKWALL Orkney KW15 1NY

and at the same time a copy of the notice for a review should be sent to:

Service Manager (Development Management) Orkney Islands Council Council Offices School Place KIRKWALL Orkney KW15 1NY

Email: planning@orkney.gov.uk

3. If permission to develop land is refused or granted subject to conditions, whether by the planning authority or by the Scottish Ministers, and the owner of the land claims that the land has become incapable of reasonably beneficial use in its existing state and cannot be rendered capable of reasonably beneficial use by the carrying out of any development which has been or would be permitted, the owner of the land may serve on the planning authority a purchase notice requiring the purchase of the owner of the land's interest in the land in accordance with Part 5 of the Act.

G:\Tec\Roads Division\Roads Support\Autocad\Standard Details\Carriageway Construction (Dec 2020)

To: Development Management Orkney Islands Council Council Offices School Place Kirkwall KW15 1NY

Or by email to planning@orkney.gov.uk

Notification of Completion of Development

It is important that the planning authority is informed as soon as possible following completion of works.

Planning Application Reference:

In accordance with Section 27B of The Town and Country Planning (Scotland) Act 1997, as amended, the planning authority is hereby advised of the completion of the above development.

- (a) Provide the date of completion of development.
- (b) Provide full name and address, and email address if available, of the person submitting Notification of Completion. (Note that any correspondence relating to the Notification of Completion will be addressed to this person.)

Signed:	 Applicant / Agent (delete as appropriate)
Print name:	
Dated:	

To: Development Management Orkney Islands Council Council Offices School Place Kirkwall KW15 1NY

Or by email to planning@orkney.gov.uk

Notification of Initiation of Development

IMPORTANT: Failure to notify the planning authority of initiation of development would constitute a breach of planning control under Section 123(1) of The Town and Country Planning (Scotland) Act 1997, as amended.

Planning Application Reference:

Date of planning permission:

In accordance with Section 27A of The Town and Country Planning (Scotland) Act 1997, as amended, the planning authority is hereby advised that it is intended to initiate the above development as follows:

- (a) Provide the date of initiation.
- (b) Provide full name and address, and email address if available, of the person(s) intending to carry out the development. (Note that in the first instance, any correspondence relating to the Notification of Initiation of Development will be addressed to this person.)
- (c) If the person included at (b) above is the owner of the land to which the development relates, state 'OWNER'. If that person is not the owner, provide the full name and address of the owner.
- (d) If a person is, or is to be, appointed to oversee the carrying out of the development on site, provide the name of that person and details of how that person to be contacted.

Signed: ______ Applicant / Agent (delete as appropriate)
Print name: ______
Dated:

NOTE: Planning conditions may be attached to a grant of planning permission. These form part of the permission, and limit and control the way in which the permission must be implemented and may include mitigation or a requirement for further information. If pre-commencement conditions are attached to the decision, development cannot proceed until these conditions have been discharged.

When development commences, the planning authority may check for compliance with all conditions. If implemented or carried out contrary to planning conditions, the development would be unauthorised and may be subject to formal enforcement action.

22/382/PP

Erect 10 houses with air source pumps, construct a road and associated landscaping and infrastructure at Cairston Road, Stromness

Regulation 10(b) Representation by Interested Party – Development Management

Development Management reaches a different conclusion than those stated in the Notice of Review.

The terms of planning conditions are not bound by or limited to comments made by consultation bodies. I.e. whilst Roads Services did not specify the full extent of the footway required by the planning condition, that does not prevent the footway upgrade forming part of the permission.

The Notice of Review highlights the width of the existing verge. That is noted, and formed part of the consideration of the application and basis of attaching the condition. Clearly not every instance where a footway is required by a developer, is in a road verge that is already 1.8 metres in width.

It is reasonable to expect the boundary wall to be upgraded in any case, as the edge of the development of the public realm, and given its currently poor condition. Provision for altering the lighting column and line of the boundary wall are both included in the condition requirements.

Development Management does not agree with the assessment of the tests of planning conditions, as set out in the Notice of Review. For example, it is argued that a footway across the frontage of a development site is not relevant to that development. In planning terms, it is linked and entirely relevant.

The Notice of Review also argues that the condition is not enforceable, on the basis it includes works to road verge, as land in control of the roads authority. This does not make the condition unenforceable, and it is common practice for developers to be required to carry out works within the road boundary, including footways, street lighting, installation of passing places, road widening, and other works required by planning condition.

It is common practice for a developer to complete a footway and appropriate boundary across the frontage of a development site in a settlement, where that fronts a public road. The Notice of Review is correct that not all that side of Cairston Road has footway currently, but as the town expands in that direction, it is appropriate that developers of any individual site be responsible for footway within the road verge across that site frontage.

It is entirely appropriate that any such necessary infrastructure upgrades are required by a developer where linked to a development, rather than at local authority cost at a later date. The outcome of the planning permission should be for the long-term public good and development of a unban street in an appropriate way, not to suit stated financial implications of a developer.

This is consistent with other relatively recent developments in Stromness, including decisions taken by Planning Committee where a developer was required to provide a footway within the public road verge.

Development Management

24 October 2024